About: Biodeterioration of plasticized PVC/montmorillonite nanocomposites in aerobic soil environment     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The aim of this study was to assess the effect of montmorillonite nanofillers, Cloisite Na+ and Cloisite 30B, on the biodeterioration of PVC-based nanocomposites plasticized by means of dioctyl adipate (DOA), dioctyl phthalate (DOP) and modified poly(propylene adipate) (PPA), in the aerobic environment of soil (soil burial test, time of exposure: 198 days). Tests were carried out at 25 ± 1 °C, under moisture-controlled (55 %) and aerobic conditions. The extent of the biodeterioration process was evaluated on the basis of changes in weight, tensile strength and elongation-at-break values. Finally, analysing chemical structures using FTIR and visual observation, both macroscopic and microscopic via scanning electron microscopy assisted in the evaluation process. The results of this study suggested that plasticized PVC/montmorillonite nanocomposites have an increased susceptibility for undergoing biological deterioration in comparison with plasticized PVC. In each instance, adding Cloisite 30B resulted in reducing the resistance of PVC/montmorillonite nanocomposites to the actions of microorganisms. In the case of Cloisite Na+ as the filler, results cannot be clearly quantified, although a negative influence prevailed, particularly a change in colour, whose change intensity was also dependent on the type of plasticizer, increasing in the following sequence: PVC/DOA/Cloisite Na+ > PVC/DOP/Cloisite Na+ > PVC/PPA/Cloisite Na+. However, each sample containing Cloisite Na+ achieved a lower rate of degradation (by normalised weight loss and FTIR) compared with nanocomposites containing Cloisite 30B. This can be attributed to the migration and accumulation of Cloisite Na+ on the surface of the nanocomposites particles where the former phenomenon producing a surface barrier which caused a reduction in the permeability of the material toward water and microorganisms, during the test.
  • The aim of this study was to assess the effect of montmorillonite nanofillers, Cloisite Na+ and Cloisite 30B, on the biodeterioration of PVC-based nanocomposites plasticized by means of dioctyl adipate (DOA), dioctyl phthalate (DOP) and modified poly(propylene adipate) (PPA), in the aerobic environment of soil (soil burial test, time of exposure: 198 days). Tests were carried out at 25 ± 1 °C, under moisture-controlled (55 %) and aerobic conditions. The extent of the biodeterioration process was evaluated on the basis of changes in weight, tensile strength and elongation-at-break values. Finally, analysing chemical structures using FTIR and visual observation, both macroscopic and microscopic via scanning electron microscopy assisted in the evaluation process. The results of this study suggested that plasticized PVC/montmorillonite nanocomposites have an increased susceptibility for undergoing biological deterioration in comparison with plasticized PVC. In each instance, adding Cloisite 30B resulted in reducing the resistance of PVC/montmorillonite nanocomposites to the actions of microorganisms. In the case of Cloisite Na+ as the filler, results cannot be clearly quantified, although a negative influence prevailed, particularly a change in colour, whose change intensity was also dependent on the type of plasticizer, increasing in the following sequence: PVC/DOA/Cloisite Na+ > PVC/DOP/Cloisite Na+ > PVC/PPA/Cloisite Na+. However, each sample containing Cloisite Na+ achieved a lower rate of degradation (by normalised weight loss and FTIR) compared with nanocomposites containing Cloisite 30B. This can be attributed to the migration and accumulation of Cloisite Na+ on the surface of the nanocomposites particles where the former phenomenon producing a surface barrier which caused a reduction in the permeability of the material toward water and microorganisms, during the test. (en)
Title
  • Biodeterioration of plasticized PVC/montmorillonite nanocomposites in aerobic soil environment
  • Biodeterioration of plasticized PVC/montmorillonite nanocomposites in aerobic soil environment (en)
skos:prefLabel
  • Biodeterioration of plasticized PVC/montmorillonite nanocomposites in aerobic soil environment
  • Biodeterioration of plasticized PVC/montmorillonite nanocomposites in aerobic soil environment (en)
skos:notation
  • RIV/70883521:28610/14:43871574!RIV15-MSM-28610___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED2.1.00/03.0111), S
http://linked.open...iv/cisloPeriodika
  • 7
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 5327
http://linked.open...ai/riv/idVysledku
  • RIV/70883521:28610/14:43871574
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Soil environment; Poly(vinyl chloride); Plasticizer; Cloisite; Biodeterioration (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • IR - Íránská islámská republika
http://linked.open...ontrolniKodProRIV
  • [15CC46FAEB39]
http://linked.open...i/riv/nazevZdroje
  • Iranian Polymer Journal
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 23
http://linked.open...iv/tvurceVysledku
  • Julinová, Markéta
  • Slavík, Roman
  • Kalendová, Alena
  • Šmída, Petr
  • Kratina, Jaromír
issn
  • 1026-1265
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/s13726-014-0249-4
http://localhost/t...ganizacniJednotka
  • 28610
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software