About: Analytic Programming Powered by Distributed Self-Organizing Migrating Algorithm Application     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Tento článek prezentuje myšlenku nového algoritmu, který kombinuje výhody evolučního algoritmu a jednoduché distribuce výpočtů, tak aby byl schopen řešit úlohy, které vyžadují mnoho opakování identické úlohy. Výpočetní čas je zkrácen díky jednoduché distribuci mezi mnoho obyčejných počítačů přes Internet. Dále je popsána progresivní technologie NET. Framework, umožňující efektivní chod distribuce, a příklady možného použití algoritmu pro řešení problému syntézy umělých neuronových sítí metodou evolučního skenování. Základní úlohou je zde vytvoření algoritmu symbolické regrese na principu analytického programování, který bude schopen šlechtit vhodné neuronové sítě. Hlavní motivací zůstává automatizace syntézy a nalezení dosud neznámých řešení. (cs)
  • This paper presents an idea of new algorithm combining advantages of evolutionary algorithm and simple distributed computing to perform tasks which required many re-runs of the same program. Computing time is shorted due to elementary distribution within a number of common computers via the Internet. Progressive .NET Framework technology allowing this algorithm to run effectively and examples of possible usage are also described. The algorithm deals with a problem of synthesis of the artificial neural networks using the evolutional scanning method. The basic task to be solved is to create a symbolic regression algorithm on principles of analytic programming, which will be capable of performing a convenient neural network synthesis. The main motivation here is the computerization of such synthesis and discovering so far unknown solutions.
  • This paper presents an idea of new algorithm combining advantages of evolutionary algorithm and simple distributed computing to perform tasks which required many re-runs of the same program. Computing time is shorted due to elementary distribution within a number of common computers via the Internet. Progressive .NET Framework technology allowing this algorithm to run effectively and examples of possible usage are also described. The algorithm deals with a problem of synthesis of the artificial neural networks using the evolutional scanning method. The basic task to be solved is to create a symbolic regression algorithm on principles of analytic programming, which will be capable of performing a convenient neural network synthesis. The main motivation here is the computerization of such synthesis and discovering so far unknown solutions. (en)
Title
  • Analytic Programming Powered by Distributed Self-Organizing Migrating Algorithm Application
  • Analytic Programming Powered by Distributed Self-Organizing Migrating Algorithm Application (en)
  • Analytické programování poháněné distribuovaným SamoOrganizujícím Migračním Algorimtmem - Aplikace (cs)
skos:prefLabel
  • Analytic Programming Powered by Distributed Self-Organizing Migrating Algorithm Application
  • Analytic Programming Powered by Distributed Self-Organizing Migrating Algorithm Application (en)
  • Analytické programování poháněné distribuovaným SamoOrganizujícím Migračním Algorimtmem - Aplikace (cs)
skos:notation
  • RIV/70883521:28140/08:63507097!RIV09-GA0-28140___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA102/06/1132), Z(MSM7088352101)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 355956
http://linked.open...ai/riv/idVysledku
  • RIV/70883521:28140/08:63507097
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • artificial neural networks; analytic programming; symbolic regression; distributed computing (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [6B4EC0FA1442]
http://linked.open...v/mistoKonaniAkce
  • Ostrava
http://linked.open...i/riv/mistoVydani
  • Ostrava
http://linked.open...i/riv/nazevZdroje
  • IEEE Proceedings 7th International Conference Computer Information Systems and Industrial Management Applications
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Vařacha, Pavel
  • Zelinka, Ivan
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • IEEE Computer Society
https://schema.org/isbn
  • 978-0-7695-3184-7
http://localhost/t...ganizacniJednotka
  • 28140
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 84 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software