About: Higher Dimensional Cost Function for Synthesis of Evolutionary Algorithms by means of Symbolic Regression     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Tento článek se zabývá alternativním nástrojem pro symbolickou regresi - analytickým programováním, které je schopno řešit složité problémy v oblastni symbolické regrese stejně jako genetické programování či gramatická evoluce. Hlavním cílem bylo ukázat, jak lze syntetizovat nové evoluční algoritmy pomocí analytického programování a to pro více proměnných (20), nejen 2, které byly použity v předchozích výzkumech. (cs)
  • This contribution deals with a new idea of how to create evolutionary algorithms by means of symbolic regression and Analytic Programming. The motivation was not only to tune some existing algorithms to their better performance, but also to find a new robust evolutionary algorithm. In this study operators of Differential Evolution (DE), SelfOrganizing Migrating Algortithm (SOMA), Hill Climbing (HC) and Simulated Annealing (SA) were used during a process of Analytic Programming. The results showed that AP was able to find successful as well as the original DE or SOMA. The cost function includes not only success in unimodal and multimodal benchmark function but also rules concerned to cost function evaluations. Results were tested on 16 benchmark functions in 2D, 20 D and 100 dimensional versions, i.e. 192 test, each was 100 times repeated and each of 100 repetitions has around 200 000 cost function evaluations. The results are presented in tabelar and graphic form.
  • This contribution deals with a new idea of how to create evolutionary algorithms by means of symbolic regression and Analytic Programming. The motivation was not only to tune some existing algorithms to their better performance, but also to find a new robust evolutionary algorithm. In this study operators of Differential Evolution (DE), SelfOrganizing Migrating Algortithm (SOMA), Hill Climbing (HC) and Simulated Annealing (SA) were used during a process of Analytic Programming. The results showed that AP was able to find successful as well as the original DE or SOMA. The cost function includes not only success in unimodal and multimodal benchmark function but also rules concerned to cost function evaluations. Results were tested on 16 benchmark functions in 2D, 20 D and 100 dimensional versions, i.e. 192 test, each was 100 times repeated and each of 100 repetitions has around 200 000 cost function evaluations. The results are presented in tabelar and graphic form. (en)
Title
  • Higher Dimensional Cost Function for Synthesis of Evolutionary Algorithms by means of Symbolic Regression
  • Vícedimenzionální účelová funkce pro syntézu evolučních algoritmů pomocí symbolické regrese (cs)
  • Higher Dimensional Cost Function for Synthesis of Evolutionary Algorithms by means of Symbolic Regression (en)
skos:prefLabel
  • Higher Dimensional Cost Function for Synthesis of Evolutionary Algorithms by means of Symbolic Regression
  • Vícedimenzionální účelová funkce pro syntézu evolučních algoritmů pomocí symbolické regrese (cs)
  • Higher Dimensional Cost Function for Synthesis of Evolutionary Algorithms by means of Symbolic Regression (en)
skos:notation
  • RIV/70883521:28140/08:63507086!RIV09-GA0-28140___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA102/06/1132), Z(MSM7088352101)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 370101
http://linked.open...ai/riv/idVysledku
  • RIV/70883521:28140/08:63507086
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Evolutionary algorithms; symbolic regression; synthesis (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [06B5458A6A5C]
http://linked.open...v/mistoKonaniAkce
  • Kuala Lumpur, Malaysia
http://linked.open...i/riv/mistoVydani
  • Piscataway
http://linked.open...i/riv/nazevZdroje
  • Second Asia International Conference on Modelling and Simulation
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Oplatková, Zuzana
  • Zelinka, Ivan
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • IEEE Operations Center
https://schema.org/isbn
  • 0-7695-2799-X
http://localhost/t...ganizacniJednotka
  • 28140
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 84 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software