About: Particle track recognition in Timepix pixel detector     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • In current particle physics field, the progressive detection technologies are used. The pixel detectors are one of them. These detectors are divided into small subdetectors (pixels), which allow viewing exact tracks of the detected particles. This thesis defines criteria for mathematical description of the shape of the particle tracks of different kinds (e-, γ, p, α, μ) and compares several methods used for a classification – neural networks, decision trees and others. The Pixa software was implemented to process the data measured by pixel detectors. This software implements the characteristics and classification methods and creates statistical and other physical results.
  • In current particle physics field, the progressive detection technologies are used. The pixel detectors are one of them. These detectors are divided into small subdetectors (pixels), which allow viewing exact tracks of the detected particles. This thesis defines criteria for mathematical description of the shape of the particle tracks of different kinds (e-, γ, p, α, μ) and compares several methods used for a classification – neural networks, decision trees and others. The Pixa software was implemented to process the data measured by pixel detectors. This software implements the characteristics and classification methods and creates statistical and other physical results. (en)
Title
  • Particle track recognition in Timepix pixel detector
  • Particle track recognition in Timepix pixel detector (en)
skos:prefLabel
  • Particle track recognition in Timepix pixel detector
  • Particle track recognition in Timepix pixel detector (en)
skos:notation
  • RIV/68407700:21670/13:00217018!RIV14-MSM-21670___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(LM2011027)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 95442
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21670/13:00217018
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • pattern recognition; pixel detector; classification methods (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [1A26524F564F]
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Čermák, Jakub
http://localhost/t...ganizacniJednotka
  • 21670
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software