About: Correlation-based Feature Ranking in Combination with Embedded Feature Selection     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Most of Feature Ranking and Feature Selection approaches can be used for categorial data only. In this paper we present new methods for feature ranking and selection obtained as a combination of the above mentioned approaches. The data mining algorithm (GAME) is designed for numerical data, but it can be applied to categorial data as well. It incorporates feature selection mechanisms and new methods, proposed in this paper, derive feature ranking from final data mining model. The rank of each feature selected by model is computed by processing correlations of outputs between neighboring model's neurons in different ways. We used four different methods based on fuzzy logic, certainty factors and simple calculus. The performance of these four feature ranking methods was tested on artificial data sets and on well known real world data sets. These methods produce ranking consistent with recently published studies.
  • Most of Feature Ranking and Feature Selection approaches can be used for categorial data only. In this paper we present new methods for feature ranking and selection obtained as a combination of the above mentioned approaches. The data mining algorithm (GAME) is designed for numerical data, but it can be applied to categorial data as well. It incorporates feature selection mechanisms and new methods, proposed in this paper, derive feature ranking from final data mining model. The rank of each feature selected by model is computed by processing correlations of outputs between neighboring model's neurons in different ways. We used four different methods based on fuzzy logic, certainty factors and simple calculus. The performance of these four feature ranking methods was tested on artificial data sets and on well known real world data sets. These methods produce ranking consistent with recently published studies. (en)
Title
  • Correlation-based Feature Ranking in Combination with Embedded Feature Selection
  • Correlation-based Feature Ranking in Combination with Embedded Feature Selection (en)
skos:prefLabel
  • Correlation-based Feature Ranking in Combination with Embedded Feature Selection
  • Correlation-based Feature Ranking in Combination with Embedded Feature Selection (en)
skos:notation
  • RIV/68407700:21240/09:00159293!RIV14-MSM-21240___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(KJB201210701), Z(MSM6840770012)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 308410
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21240/09:00159293
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Feature Ranking; Feature Selection; Correlation; FAKE-GAME; Embedded Model. (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [7DD00C185708]
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Pilný, Aleš
  • Kordík, Pavel
  • Šnorek, Miroslav
  • Oertel, W.
http://linked.open...n/vavai/riv/zamer
http://localhost/t...ganizacniJednotka
  • 21240
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software