About: Exploiting Features - Locally Interleaved Sequential Alignment for Object Detection     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
  • ftp://cmp.felk.cvut.cz/pub/cmp/articles/hurycd1/hurych-accv2012.pdf
Description
  • We exploit image features multiple times in order to make sequential decision process faster and better performing. In the decision process features providing knowledge about the object presence or absence in a given detection window are successively evaluated. We show that these features also provide information about object position within the evaluated window. The classification process is sequentially interleaved with estimating the correct position. The position estimate is used for steering the features yet to be evaluated. This locally interleaved sequential alignment (LISA) allows to run an object detector on sparser grid which speeds up the process. The position alignment is jointly learned with the detector. We achieve a better detection rate since the method allows for training the detector on perfectly aligned image samples. For estimation of the alignment we propose a learnable regressor that approximates a non-linear regression function and runs in ne2076-1465gligible time.
  • We exploit image features multiple times in order to make sequential decision process faster and better performing. In the decision process features providing knowledge about the object presence or absence in a given detection window are successively evaluated. We show that these features also provide information about object position within the evaluated window. The classification process is sequentially interleaved with estimating the correct position. The position estimate is used for steering the features yet to be evaluated. This locally interleaved sequential alignment (LISA) allows to run an object detector on sparser grid which speeds up the process. The position alignment is jointly learned with the detector. We achieve a better detection rate since the method allows for training the detector on perfectly aligned image samples. For estimation of the alignment we propose a learnable regressor that approximates a non-linear regression function and runs in ne2076-1465gligible time. (en)
Title
  • Exploiting Features - Locally Interleaved Sequential Alignment for Object Detection
  • Exploiting Features - Locally Interleaved Sequential Alignment for Object Detection (en)
skos:prefLabel
  • Exploiting Features - Locally Interleaved Sequential Alignment for Object Detection
  • Exploiting Features - Locally Interleaved Sequential Alignment for Object Detection (en)
skos:notation
  • RIV/68407700:21230/13:00212523!RIV15-MSM-21230___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(7E10044), P(GAP103/10/1585), P(GPP103/11/P700)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 74294
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/13:00212523
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • exploit; features; adaboost; waldboost; sequential; regression; predictors; interleaved; alignment; sliding window (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [BFDD0BB9596E]
http://linked.open...v/mistoKonaniAkce
  • Daejeon
http://linked.open...i/riv/mistoVydani
  • Heidelberg
http://linked.open...i/riv/nazevZdroje
  • Computer Vision - ACCV 2012, 11th Asian Conference on Computer Vision, Part 1
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Svoboda, Tomáš
  • Zimmermann, Karel
  • Hurych, David
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
issn
  • 0302-9743
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/978-3-642-37331-2_34
http://purl.org/ne...btex#hasPublisher
  • Springer-Verlag
https://schema.org/isbn
  • 978-3-642-37330-5
http://localhost/t...ganizacniJednotka
  • 21230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software