About: Estimation of Viscous Friction Parameters in Acrobot     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • This paper deals with estimation of coefficients of viscous friction for a model of an acrobot. The acrobot represents an underactuated nonlinear dynamic system, where typically not all states are measurable. Moreover effect of noise corruption on remaining measured states is often non negligible. However, except for friction coefficient, all remaining parameters of the model can usually be measured directly. To overcome mentioned difficulties and to take advantage of abundant prior knowledge, we applied hybrid extended Kalman filter to this task. Using Monte Carlo (MC) simulations we approximated probability density functions of friction coefficients estimate and showed that the bias and variance of the estimate can be controlled by properly designed experiment.
  • This paper deals with estimation of coefficients of viscous friction for a model of an acrobot. The acrobot represents an underactuated nonlinear dynamic system, where typically not all states are measurable. Moreover effect of noise corruption on remaining measured states is often non negligible. However, except for friction coefficient, all remaining parameters of the model can usually be measured directly. To overcome mentioned difficulties and to take advantage of abundant prior knowledge, we applied hybrid extended Kalman filter to this task. Using Monte Carlo (MC) simulations we approximated probability density functions of friction coefficients estimate and showed that the bias and variance of the estimate can be controlled by properly designed experiment. (en)
Title
  • Estimation of Viscous Friction Parameters in Acrobot
  • Estimation of Viscous Friction Parameters in Acrobot (en)
skos:prefLabel
  • Estimation of Viscous Friction Parameters in Acrobot
  • Estimation of Viscous Friction Parameters in Acrobot (en)
skos:notation
  • RIV/68407700:21230/11:00184561!RIV12-GA0-21230___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GAP103/10/0628)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 198011
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/11:00184561
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Filtering and Identification; Nonlinear dynamics; Stochastic systems (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [661200635EAE]
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Dolinský, Kamil
  • Čelikovský, Sergej
http://localhost/t...ganizacniJednotka
  • 21230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 111 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software