About: Modeling Tool Wear in End Milling Using Enhanced GMDH Learning Networks     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • This paper presents an enhanced approach to predictive modeling for determining tool wear in end milling operations based on enhanced group method of data handling (e GMDH). Using milling input parameters (speed, feed, and depth of cut) and response (tool wear), the data for the model is partitioned into training and testing datasets, and the training dataset is used to realize a predictive model that is a function of the input parameters and the coefficients determined. In our approach, we first present a methodology for modeling, and then develop predictive model(s) of the problem being solved in the form of second order equations based on the input data and coefficients realized. This approach leads to some generalization because it becomes possible to predict not only the test data obtained during experimentation, but other test data outside the experimental results can also be used
  • This paper presents an enhanced approach to predictive modeling for determining tool wear in end milling operations based on enhanced group method of data handling (e GMDH). Using milling input parameters (speed, feed, and depth of cut) and response (tool wear), the data for the model is partitioned into training and testing datasets, and the training dataset is used to realize a predictive model that is a function of the input parameters and the coefficients determined. In our approach, we first present a methodology for modeling, and then develop predictive model(s) of the problem being solved in the form of second order equations based on the input data and coefficients realized. This approach leads to some generalization because it becomes possible to predict not only the test data obtained during experimentation, but other test data outside the experimental results can also be used (en)
  • Článek prezentuje přístup využívající algrotmu eGMDH k predikci opotřebení vrtných nástrojů při vrtání. To je odhadováno ze vstupních parametrů - rychlost, příkon a hloubka vrtu. V článku je prezentována jak metoda eGMDH tak i výsledky realizovaných experimentů. (cs)
Title
  • Modeling Tool Wear in End Milling Using Enhanced GMDH Learning Networks
  • Modelování opotřebení vrtáků pomocí eGMDH algoritmu (cs)
  • Modeling Tool Wear in End Milling Using Enhanced GMDH Learning Networks (en)
skos:prefLabel
  • Modeling Tool Wear in End Milling Using Enhanced GMDH Learning Networks
  • Modelování opotřebení vrtáků pomocí eGMDH algoritmu (cs)
  • Modeling Tool Wear in End Milling Using Enhanced GMDH Learning Networks (en)
skos:notation
  • RIV/68407700:21230/08:03139207!RIV09-AV0-21230___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1ET101210513)
http://linked.open...iv/cisloPeriodika
  • 11-12
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 379912
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/08:03139207
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • GMDH; self-organizing networks; system modelling; tool wear (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [E43E82AD050F]
http://linked.open...i/riv/nazevZdroje
  • The International Journal of Advanced Manufacturing Technology
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 39
http://linked.open...iv/tvurceVysledku
  • Buryan, Petr
  • Lemke, F.
  • Onwubolu, G. C.
http://linked.open...ain/vavai/riv/wos
  • 000260699300003
issn
  • 0268-3768
number of pages
http://localhost/t...ganizacniJednotka
  • 21230
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software