Attributes | Values |
---|
rdf:type
| |
Description
| - This paper presents an enhanced approach to predictive modeling for determining tool wear in end milling operations based on enhanced group method of data handling (e GMDH). Using milling input parameters (speed, feed, and depth of cut) and response (tool wear), the data for the model is partitioned into training and testing datasets, and the training dataset is used to realize a predictive model that is a function of the input parameters and the coefficients determined. In our approach, we first present a methodology for modeling, and then develop predictive model(s) of the problem being solved in the form of second order equations based on the input data and coefficients realized. This approach leads to some generalization because it becomes possible to predict not only the test data obtained during experimentation, but other test data outside the experimental results can also be used
- This paper presents an enhanced approach to predictive modeling for determining tool wear in end milling operations based on enhanced group method of data handling (e GMDH). Using milling input parameters (speed, feed, and depth of cut) and response (tool wear), the data for the model is partitioned into training and testing datasets, and the training dataset is used to realize a predictive model that is a function of the input parameters and the coefficients determined. In our approach, we first present a methodology for modeling, and then develop predictive model(s) of the problem being solved in the form of second order equations based on the input data and coefficients realized. This approach leads to some generalization because it becomes possible to predict not only the test data obtained during experimentation, but other test data outside the experimental results can also be used (en)
- Článek prezentuje přístup využívající algrotmu eGMDH k predikci opotřebení vrtných nástrojů při vrtání. To je odhadováno ze vstupních parametrů - rychlost, příkon a hloubka vrtu. V článku je prezentována jak metoda eGMDH tak i výsledky realizovaných experimentů. (cs)
|
Title
| - Modeling Tool Wear in End Milling Using Enhanced GMDH Learning Networks
- Modelování opotřebení vrtáků pomocí eGMDH algoritmu (cs)
- Modeling Tool Wear in End Milling Using Enhanced GMDH Learning Networks (en)
|
skos:prefLabel
| - Modeling Tool Wear in End Milling Using Enhanced GMDH Learning Networks
- Modelování opotřebení vrtáků pomocí eGMDH algoritmu (cs)
- Modeling Tool Wear in End Milling Using Enhanced GMDH Learning Networks (en)
|
skos:notation
| - RIV/68407700:21230/08:03139207!RIV09-AV0-21230___
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/68407700:21230/08:03139207
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - GMDH; self-organizing networks; system modelling; tool wear (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - GB - Spojené království Velké Británie a Severního Irska
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - The International Journal of Advanced Manufacturing Technology
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Buryan, Petr
- Lemke, F.
- Onwubolu, G. C.
|
http://linked.open...ain/vavai/riv/wos
| |
issn
| |
number of pages
| |
http://localhost/t...ganizacniJednotka
| |
is http://linked.open...avai/riv/vysledek
of | |