About: An iterative algorithm learning the maximal margin classifier     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • A simple learning algorithm for maximal margin classifiers (also support vector machines with quadratic cost function) is proposed. We build our iterative algorithm on top of the Schlesinger-Kozinec algorithm (S-K-algorithm) from 1981 which finds a maximal margin hyperplane with a given precision for separable data. We suggest a generalization of the S-K-algorithm (i) to the non-linear case using kernel functions and (ii) for non-separable data. The requirement in memory storage is linear to the data. This property allows the proposed algorithm to be used for large training problems. The resulting algorithm is simple to implement and as the experiments showed competitive to the state-of-the-art algorithms. The implementation of the algorithm in Matlab is available. We tested the algorithm on the problem aiming at recognition poor quality numerals.
  • A simple learning algorithm for maximal margin classifiers (also support vector machines with quadratic cost function) is proposed. We build our iterative algorithm on top of the Schlesinger-Kozinec algorithm (S-K-algorithm) from 1981 which finds a maximal margin hyperplane with a given precision for separable data. We suggest a generalization of the S-K-algorithm (i) to the non-linear case using kernel functions and (ii) for non-separable data. The requirement in memory storage is linear to the data. This property allows the proposed algorithm to be used for large training problems. The resulting algorithm is simple to implement and as the experiments showed competitive to the state-of-the-art algorithms. The implementation of the algorithm in Matlab is available. We tested the algorithm on the problem aiming at recognition poor quality numerals. (en)
Title
  • An iterative algorithm learning the maximal margin classifier
  • An iterative algorithm learning the maximal margin classifier (en)
skos:prefLabel
  • An iterative algorithm learning the maximal margin classifier
  • An iterative algorithm learning the maximal margin classifier (en)
skos:notation
  • RIV/68407700:21230/03:03091285!RIV/2004/GA0/212304/N
http://linked.open.../vavai/riv/strany
  • 1985 ; 1996
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA102/00/1679), Z(MSM 212300013)
http://linked.open...iv/cisloPeriodika
  • 9
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 597998
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/03:03091285
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Kernel functions;Linear classifier;Pattern recognition;Suppervised learning;Support Vector Machines (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [215A67176A5A]
http://linked.open...i/riv/nazevZdroje
  • Pattern recognition
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 36
http://linked.open...iv/tvurceVysledku
  • Hlaváč, Václav
  • Franc, Vojtěch
http://linked.open...n/vavai/riv/zamer
issn
  • 0031-3203
number of pages
http://localhost/t...ganizacniJednotka
  • 21230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software