About: Study of Learning Entropy for Novelty Detection in lung tumor motion prediction for target tracking radiation therapy     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • This paper presents recently introduced concept of Learning Entropy (LE) for time series and recalls the practical form of its evaluation in real time. Then, a technique that estimates the increased risk of prediction inaccuracy of adaptive predictors in real time using LE is introduced. On simulation examples using artificial signal and real respiratory time series, it is shown that LE can be used to evaluate the actual validity of the adaptive predicting model of time series in real time. The introduced technique is discussed as a potential approach to the improvement of accuracy of lung tumor tracking radiation therapy.
  • This paper presents recently introduced concept of Learning Entropy (LE) for time series and recalls the practical form of its evaluation in real time. Then, a technique that estimates the increased risk of prediction inaccuracy of adaptive predictors in real time using LE is introduced. On simulation examples using artificial signal and real respiratory time series, it is shown that LE can be used to evaluate the actual validity of the adaptive predicting model of time series in real time. The introduced technique is discussed as a potential approach to the improvement of accuracy of lung tumor tracking radiation therapy. (en)
Title
  • Study of Learning Entropy for Novelty Detection in lung tumor motion prediction for target tracking radiation therapy
  • Study of Learning Entropy for Novelty Detection in lung tumor motion prediction for target tracking radiation therapy (en)
skos:prefLabel
  • Study of Learning Entropy for Novelty Detection in lung tumor motion prediction for target tracking radiation therapy
  • Study of Learning Entropy for Novelty Detection in lung tumor motion prediction for target tracking radiation therapy (en)
skos:notation
  • RIV/68407700:21220/14:00224858!RIV15-MSM-21220___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 48294
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21220/14:00224858
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Novelty Detection; lung tumor motion; prediction; target tracking; radiation therapy; neural networks (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [DAFC0D745E5A]
http://linked.open...v/mistoKonaniAkce
  • Beijing
http://linked.open...i/riv/mistoVydani
  • Piscataway
http://linked.open...i/riv/nazevZdroje
  • Neural Networks (IJCNN), 2014 International Joint Conference on - Scopus ISBN
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Bukovský, Ivo
  • Homma, N.
  • Kei, I.
  • Cejnek, Matouš
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://bibframe.org/vocab/doi
  • 10.1109/IJCNN.2014.6889834
http://purl.org/ne...btex#hasPublisher
  • IEEE
https://schema.org/isbn
  • 978-1-4799-1484-5
http://localhost/t...ganizacniJednotka
  • 21220
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software