About: *LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • *A Large-Eddy-Simulation (LES) approach is applied to the calculation of multiple SI-engine cycles in order to study the causes of cycle-to-cycle combustion variations. The single-cylinder research engine adopted in the present study is equipped with direct fuel-injection and variable valve timing for both the intake and exhaust side. Operating conditions representing cases with considerably different scatter of the in-cylinder pressure traces are selected to investigate the causes of the cycle-to-cycle combustion variations. In the simulation the engine is represented by a coupled 1D/3D-CFD model, with the combustion chamber and the intake/exhaust ports modeled in 3D-CFD, and the intake/exhaust pipework set-up adopting a 1D-CFD approach. The adopted LES flow model is based upon the well-established Smagorinsky approach. Simulation of the fuel spray propagation process is based upon the discrete droplet model. Modeling of flame propagation is realized on the basis of the coherent flame concept. Spark ignition and early flame kernel formation is approximated by prescribing the initial flame surface density in a sphere around the spark location. For the LES study of the causes of the cycle-to-cycle combustion variations the simulations are run for more than 20 cycles for each of the selected operating points in order to obtain a statistically relevant set of results for the in-cylinder flow, mixture formation and combustion quantities. Assessment of the impact of the instantaneous, cycle-resolved flow quantities on the early flame kernel formation and the subsequent main combustion process is achieved by analysis of both spatially resolved and cylinder-averaged result data.
  • *A Large-Eddy-Simulation (LES) approach is applied to the calculation of multiple SI-engine cycles in order to study the causes of cycle-to-cycle combustion variations. The single-cylinder research engine adopted in the present study is equipped with direct fuel-injection and variable valve timing for both the intake and exhaust side. Operating conditions representing cases with considerably different scatter of the in-cylinder pressure traces are selected to investigate the causes of the cycle-to-cycle combustion variations. In the simulation the engine is represented by a coupled 1D/3D-CFD model, with the combustion chamber and the intake/exhaust ports modeled in 3D-CFD, and the intake/exhaust pipework set-up adopting a 1D-CFD approach. The adopted LES flow model is based upon the well-established Smagorinsky approach. Simulation of the fuel spray propagation process is based upon the discrete droplet model. Modeling of flame propagation is realized on the basis of the coherent flame concept. Spark ignition and early flame kernel formation is approximated by prescribing the initial flame surface density in a sphere around the spark location. For the LES study of the causes of the cycle-to-cycle combustion variations the simulations are run for more than 20 cycles for each of the selected operating points in order to obtain a statistically relevant set of results for the in-cylinder flow, mixture formation and combustion quantities. Assessment of the impact of the instantaneous, cycle-resolved flow quantities on the early flame kernel formation and the subsequent main combustion process is achieved by analysis of both spatially resolved and cylinder-averaged result data. (en)
Title
  • *LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations
  • *LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations (en)
skos:prefLabel
  • *LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations
  • *LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations (en)
skos:notation
  • RIV/68407700:21220/13:00213668!RIV14-MSM-21220___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(7E10050)
http://linked.open...iv/cisloPeriodika
  • April
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 84734
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21220/13:00213668
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Cycle-to-cycle variations; 3-D CFD; LES; ECFM; modeling; SI engine (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [93BE1D04E130]
http://linked.open...i/riv/nazevZdroje
  • Society of Automotive Engineers Technical Paper Series
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 2013
http://linked.open...iv/tvurceVysledku
  • Macek, Jan
  • Vítek, Oldřich
  • Priesching, P.
  • Tatschl, R.
  • Schuemie, H.
  • Bogensperger, M.
  • Pavlovic, Z.
issn
  • 0148-7191
number of pages
http://bibframe.org/vocab/doi
  • 10.4271/2013-01-1084
http://localhost/t...ganizacniJednotka
  • 21220
Faceted Search & Find service v1.16.116 as of Feb 22 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3239 as of Feb 22 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 82 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software