Attributes | Values |
---|
rdf:type
| |
Description
| - We investigate continuous piecewise affine interval maps with count-ably many laps that preserve the Lebesgue measure. In particular, we construct such maps having knot points (a point x where Dini's derivatives satisfy D^+f(x) = D^-f(x) = infinity and D_+f(x) = D_-f(x) = - infinity) and estimate their topological entropy. Our main result is: for any epsilon > 0 we construct a continuous interval map g = g_epsilon such that (i) g preserves the Lebesgue measure; (ii) knot points of g are dense in [0; 1] and for a G_delta dense set of z's, the set g^-1({z}) is infinite; (iii) h_top(g)<= log2+epsilon.
- We investigate continuous piecewise affine interval maps with count-ably many laps that preserve the Lebesgue measure. In particular, we construct such maps having knot points (a point x where Dini's derivatives satisfy D^+f(x) = D^-f(x) = infinity and D_+f(x) = D_-f(x) = - infinity) and estimate their topological entropy. Our main result is: for any epsilon > 0 we construct a continuous interval map g = g_epsilon such that (i) g preserves the Lebesgue measure; (ii) knot points of g are dense in [0; 1] and for a G_delta dense set of z's, the set g^-1({z}) is infinite; (iii) h_top(g)<= log2+epsilon. (en)
|
Title
| - Irreducibility, Infinite Level Sets,and Small Entropy
- Irreducibility, Infinite Level Sets,and Small Entropy (en)
|
skos:prefLabel
| - Irreducibility, Infinite Level Sets,and Small Entropy
- Irreducibility, Infinite Level Sets,and Small Entropy (en)
|
skos:notation
| - RIV/68407700:21110/11:00189602!RIV12-MSM-21110___
|
http://linked.open...avai/predkladatel
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(GA201/09/0854), Z(MSM6840770010)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/68407700:21110/11:00189602
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - interval map, knot point, Lebesgue measure, topological entropy (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - US - Spojené státy americké
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| |
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Bobok, Jozef
- Soukenka, Martin
|
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |
http://localhost/t...ganizacniJednotka
| |
is http://linked.open...avai/riv/vysledek
of | |