Attributes | Values |
---|
rdf:type
| |
Description
| - Na prostoru symetrických, pozitivně definintních matic (prostor deformačních tenzorù) lze zavést Riemannovu metriku tak, že exponenciála matice reprezentuje geodetiku, tj. zobecněnou přímku (nebo-li nejkratší spojnici dvou bodù), vycházející z poèátečního bodu - jednotkové matice, směrem určeným vektorem - zadanou maticí. Ukážeme, že logaritmický tenzor přetvoření lze tak interpretovat jako vektor určený geodetikou, která spojuje nedeformovaný a deformovaný stav. (cs)
- On the space of all symmetric positive definite matrices (the space of deformation tensor fields) one can introduce a Riemannian geometry, so that the matrix exponential represents ageodesic (i.e. a generalised straight line, the shortest connecting line of two points) emanating from an initial point - the identity matrix, in a direction given by a vector - the prescribed matrix. Based on this approach, we prove that the logarithmic strain can be interpreted as a vector, determined by a geodesic connecting an undeformed and a deformed states.
- On the space of all symmetric positive definite matrices (the space of deformation tensor fields) one can introduce a Riemannian geometry, so that the matrix exponential represents ageodesic (i.e. a generalised straight line, the shortest connecting line of two points) emanating from an initial point - the identity matrix, in a direction given by a vector - the prescribed matrix. Based on this approach, we prove that the logarithmic strain can be interpreted as a vector, determined by a geodesic connecting an undeformed and a deformed states. (en)
|
Title
| - Matrix exponential and geometrical meaning of logarithmic strain
- Matrix exponential and geometrical meaning of logarithmic strain (en)
- Exponenciála matice a geometrický význam pole logaritmického tenzoru přetvoření (cs)
|
skos:prefLabel
| - Matrix exponential and geometrical meaning of logarithmic strain
- Matrix exponential and geometrical meaning of logarithmic strain (en)
- Exponenciála matice a geometrický význam pole logaritmického tenzoru přetvoření (cs)
|
skos:notation
| - RIV/68378297:_____/07:00087614!RIV08-AV0-68378297
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/68378297:_____/07:00087614
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - finite deformations; logarithmic strain; Riemannian geometry (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...v/mistoKonaniAkce
| |
http://linked.open...i/riv/mistoVydani
| |
http://linked.open...i/riv/nazevZdroje
| - Engineering Mechanics 2007
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| |
http://linked.open...vavai/riv/typAkce
| |
http://linked.open.../riv/zahajeniAkce
| |
http://linked.open...n/vavai/riv/zamer
| |
number of pages
| |
http://purl.org/ne...btex#hasPublisher
| - Ústav termomechaniky AV ČR
|
https://schema.org/isbn
| |
is http://linked.open...avai/riv/vysledek
of | |