About: Proton thermal energetics in the solar wind: Helios reloaded     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The proton thermal energetics in the slow solar wind between 0.3 and 1 AU is reinvestigated using the Helios 1 and 2 data, complementing a similar analysis for the fast solar wind [Hellinger et al., 2011]. The results for slow and fast solar winds are compared and discussed in the context of previous results. Protons need to be heated in the perpendicular direction with respect to the ambient magnetic field from 0.3 to 1 AU. In the parallel direction, protons need to be cooled at 0.3 AU, with a cooling rate comparable to the corresponding perpendicular heating rate; between 0.3 and 1 AU, the required cooling rate decreases until a transition to heating occurs: by 1 AU the protons require parallel heating, with a heating rate comparable to that required to sustain the perpendicular temperature. The heating/cooling rates (per unit volume) in the fast and slow solar winds are proportional to the ratio between the proton kinetic energy and the expansion time. On average, the protons need to be heated and the necessary heating rates are comparable to the energy cascade rate of the magnetohydrodynamic turbulence estimated from the stationary Kolmogorov-Yaglom law at 1 AU; however, in the expanding solar wind, the stationarity assumption for this law is questionable. The turbulent energy cascade may explain the average proton energetics (although the stationarity assumption needs to be justified) but the parallel cooling is likely related to microinstabilities connected with the structure of the proton velocity distribution function. This is supported by linear analysis based on observed data and by results of numerical simulations.
  • The proton thermal energetics in the slow solar wind between 0.3 and 1 AU is reinvestigated using the Helios 1 and 2 data, complementing a similar analysis for the fast solar wind [Hellinger et al., 2011]. The results for slow and fast solar winds are compared and discussed in the context of previous results. Protons need to be heated in the perpendicular direction with respect to the ambient magnetic field from 0.3 to 1 AU. In the parallel direction, protons need to be cooled at 0.3 AU, with a cooling rate comparable to the corresponding perpendicular heating rate; between 0.3 and 1 AU, the required cooling rate decreases until a transition to heating occurs: by 1 AU the protons require parallel heating, with a heating rate comparable to that required to sustain the perpendicular temperature. The heating/cooling rates (per unit volume) in the fast and slow solar winds are proportional to the ratio between the proton kinetic energy and the expansion time. On average, the protons need to be heated and the necessary heating rates are comparable to the energy cascade rate of the magnetohydrodynamic turbulence estimated from the stationary Kolmogorov-Yaglom law at 1 AU; however, in the expanding solar wind, the stationarity assumption for this law is questionable. The turbulent energy cascade may explain the average proton energetics (although the stationarity assumption needs to be justified) but the parallel cooling is likely related to microinstabilities connected with the structure of the proton velocity distribution function. This is supported by linear analysis based on observed data and by results of numerical simulations. (en)
Title
  • Proton thermal energetics in the solar wind: Helios reloaded
  • Proton thermal energetics in the solar wind: Helios reloaded (en)
skos:prefLabel
  • Proton thermal energetics in the solar wind: Helios reloaded
  • Proton thermal energetics in the solar wind: Helios reloaded (en)
skos:notation
  • RIV/68378289:_____/13:00395708!RIV14-AV0-68378289
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GAP209/12/2023), P(GAP209/12/2041)
http://linked.open...iv/cisloPeriodika
  • 4
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 100570
http://linked.open...ai/riv/idVysledku
  • RIV/68378289:_____/13:00395708
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • solar wind; proton energetics; turbulent heating (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [B57353DC412E]
http://linked.open...i/riv/nazevZdroje
  • Journal of Geophysical Research: Space Physics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 118
http://linked.open...iv/tvurceVysledku
  • Hellinger, Petr
  • Matteini, L.
  • Štverák, Štěpán
  • Velli, M.
  • Trávníček, P.
http://linked.open...ain/vavai/riv/wos
  • 000319924400001
issn
  • 2169-9380
number of pages
http://bibframe.org/vocab/doi
  • 10.1002/jgra.50107
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software