AttributesValues
rdf:type
Description
  • Bitterlings are relatively small cypriniform species and extremely interesting evolutionarily due to their unusual reproductive behaviors and their coevolutionary relationships with freshwater mussels. As a group, they have attracted a great deal of attention in biological studies. Understanding the origin and evolution of their mating system demands a well-corroborated hypothesis of their evolutionary relationships. In this study, we provide the most comprehensive phylogenetic reconstruction of species relationships of the group based on partitioned maximum likelihood and Bayesian methods using DNA sequence variation of nuclear and mitochondrial genes on 41 species, several subspecies and three undescribed species. Our findings support the monophyly of the Acheilognathidae. Two of the three currently recognized genera are not monophyletic and the family can be subdivided into six clades. These clades are further regarded as genera based on both their phylogenetic relationships and a reappraisal of morphological characters. We present a revised classification for the Acheilognathidae with five genera/lineages: Rhodeus, Acheilognathus (new constitution), Tanakia (new constitution), Paratanakia gen. nov., and Pseudorhodeus gen. nov. and an unnamed clade containing five species currently referred to as Acheilognathus’’. Gene trees of several bitterling species indicate that the taxa are not monophyletic. This result highlights a potentially dramatic underestimation of species diversity in this family. Using our new phylogenetic framework, we discuss the evolution of the Acheilognathidae relative to classification, taxonomy and biogeography.
  • Bitterlings are relatively small cypriniform species and extremely interesting evolutionarily due to their unusual reproductive behaviors and their coevolutionary relationships with freshwater mussels. As a group, they have attracted a great deal of attention in biological studies. Understanding the origin and evolution of their mating system demands a well-corroborated hypothesis of their evolutionary relationships. In this study, we provide the most comprehensive phylogenetic reconstruction of species relationships of the group based on partitioned maximum likelihood and Bayesian methods using DNA sequence variation of nuclear and mitochondrial genes on 41 species, several subspecies and three undescribed species. Our findings support the monophyly of the Acheilognathidae. Two of the three currently recognized genera are not monophyletic and the family can be subdivided into six clades. These clades are further regarded as genera based on both their phylogenetic relationships and a reappraisal of morphological characters. We present a revised classification for the Acheilognathidae with five genera/lineages: Rhodeus, Acheilognathus (new constitution), Tanakia (new constitution), Paratanakia gen. nov., and Pseudorhodeus gen. nov. and an unnamed clade containing five species currently referred to as Acheilognathus’’. Gene trees of several bitterling species indicate that the taxa are not monophyletic. This result highlights a potentially dramatic underestimation of species diversity in this family. Using our new phylogenetic framework, we discuss the evolution of the Acheilognathidae relative to classification, taxonomy and biogeography. (en)
Title
  • Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: Evidence for necessary taxonomic revision in the family and the identification of cryptic species
  • Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: Evidence for necessary taxonomic revision in the family and the identification of cryptic species (en)
skos:prefLabel
  • Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: Evidence for necessary taxonomic revision in the family and the identification of cryptic species
  • Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: Evidence for necessary taxonomic revision in the family and the identification of cryptic species (en)
skos:notation
  • RIV/68081766:_____/14:00433592!RIV15-AV0-68081766
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I
http://linked.open...iv/cisloPeriodika
  • December
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 36539
http://linked.open...ai/riv/idVysledku
  • RIV/68081766:_____/14:00433592
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Acheilognathinae; Cyprinidae; Cryptic species; Nuclear loci; Cytochrome b; European bitterling (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [FC052505D03F]
http://linked.open...i/riv/nazevZdroje
  • Molecular Phylogenetics and Evolution
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 81
http://linked.open...iv/tvurceVysledku
  • Reichard, Martin
  • Li, F.
  • He, S.
  • Lin, Y.-S.
  • Smith, Carl
  • Kim, S.
  • Chang, H.-C.
  • Chen, W.-J.
  • Kim, W.
  • Koo, H.
  • Lavoué, S.
  • Lee, J.-S.
  • Mayden, R. L.
  • Miya, M.
  • Morosawa, T.
  • Sado, T.
  • Shao, K.-T.
  • Uehara, K.
http://linked.open...ain/vavai/riv/wos
  • 000345953100017
issn
  • 1055-7903
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.ympev.2014.08.026
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 37 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software