About: Stability of source mechanisms inverted from P-wave amplitude microseismic monitoring data acquired at the surface     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • We study the stability of source mechanisms inverted from data acquired at surface and near-surface monitoring arrays. The study is focused on P-wave data acquired on vertical components, as this is the most common type of acquisition. We apply ray modelling on three models: a fully homogeneous isotropic model, a laterally homogeneous isotropic model and a laterally homogeneous anisotropic model to simulate three commonly used models in inversion. We use geometries of real arrays, one consisting in surface receivers and one consisting in buried’ geophones at the near-surface. Stability was tested for two of the frequently observed source mechanisms: strike-slip and dip-slip and was evaluated by comparing the parameters of correct and inverted mechanisms. We assume these double-couple source mechanisms and use quantitatively the inversion allowing non-double-couple components to measure stability of the inversion. To test the robustness we inverted synthetic amplitudes computed for a laterally homogeneous isotropic model and contaminated with noise using a fully homogeneous model in the inversion. Analogously amplitudes computed in a laterally homogeneous anisotropic model were inverted in all three models. We show that a star-like surface acquisition array provides very stable inversion up to a very high level of noise in data. Furthermore, we reveal that strike-slip inversion is more stable than dip-slip inversion for the receiver geometries considered here. We show that noise and an incorrect velocity model may result in narrow bands of source mechanisms in Hudson's plots.
  • We study the stability of source mechanisms inverted from data acquired at surface and near-surface monitoring arrays. The study is focused on P-wave data acquired on vertical components, as this is the most common type of acquisition. We apply ray modelling on three models: a fully homogeneous isotropic model, a laterally homogeneous isotropic model and a laterally homogeneous anisotropic model to simulate three commonly used models in inversion. We use geometries of real arrays, one consisting in surface receivers and one consisting in buried’ geophones at the near-surface. Stability was tested for two of the frequently observed source mechanisms: strike-slip and dip-slip and was evaluated by comparing the parameters of correct and inverted mechanisms. We assume these double-couple source mechanisms and use quantitatively the inversion allowing non-double-couple components to measure stability of the inversion. To test the robustness we inverted synthetic amplitudes computed for a laterally homogeneous isotropic model and contaminated with noise using a fully homogeneous model in the inversion. Analogously amplitudes computed in a laterally homogeneous anisotropic model were inverted in all three models. We show that a star-like surface acquisition array provides very stable inversion up to a very high level of noise in data. Furthermore, we reveal that strike-slip inversion is more stable than dip-slip inversion for the receiver geometries considered here. We show that noise and an incorrect velocity model may result in narrow bands of source mechanisms in Hudson's plots. (en)
Title
  • Stability of source mechanisms inverted from P-wave amplitude microseismic monitoring data acquired at the surface
  • Stability of source mechanisms inverted from P-wave amplitude microseismic monitoring data acquired at the surface (en)
skos:prefLabel
  • Stability of source mechanisms inverted from P-wave amplitude microseismic monitoring data acquired at the surface
  • Stability of source mechanisms inverted from P-wave amplitude microseismic monitoring data acquired at the surface (en)
skos:notation
  • RIV/67985891:_____/14:00429492!RIV15-GA0-67985891
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GAP210/12/2451)
http://linked.open...iv/cisloPeriodika
  • 3
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 46960
http://linked.open...ai/riv/idVysledku
  • RIV/67985891:_____/14:00429492
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • microseismic monitoring; inversion; ray modelling; source mechanism (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [EAE27EA67BD5]
http://linked.open...i/riv/nazevZdroje
  • Geophysical Prospecting
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 62
http://linked.open...iv/tvurceVysledku
  • Eisner, Leo
  • Staněk, František
  • Moser, T. J.
http://linked.open...ain/vavai/riv/wos
  • 000334043300005
issn
  • 0016-8025
number of pages
http://bibframe.org/vocab/doi
  • 10.1111/1365-2478.12107
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software