Attributes | Values |
---|
rdf:type
| |
Description
| - We have derived the cavity function to second order in density and the fourth virial coefficient as functions of reduced temperature for penetrable sphere fluids. The expressions are exact, except for the function represented by an elementary diagram inside the core, which is approximated by a polynomial form in excellent agreement with accurate results obtained by Monte Carlo integration. Comparison with the hypernetted-chain and Percus-Yevick theories shows that the latter is better than the former only for reduced temperature lower than 1. However, even at zero temperature (hard sphere limit), the Percus-Yevick solution is not accurate inside the overlapping region, where no practical cancellation of the neglected diagrams takes place.
- We have derived the cavity function to second order in density and the fourth virial coefficient as functions of reduced temperature for penetrable sphere fluids. The expressions are exact, except for the function represented by an elementary diagram inside the core, which is approximated by a polynomial form in excellent agreement with accurate results obtained by Monte Carlo integration. Comparison with the hypernetted-chain and Percus-Yevick theories shows that the latter is better than the former only for reduced temperature lower than 1. However, even at zero temperature (hard sphere limit), the Percus-Yevick solution is not accurate inside the overlapping region, where no practical cancellation of the neglected diagrams takes place. (en)
- Pro tekutinu prostupných koulí byly odvozeny vztahy pro kavitní funkci do druhého řádu v hustotě a pro čtvrtý viriální koeficient v závislosti na redukované teplotě. Odvozené vztahy jsou exaktní s výjimkou funkce representované elementárním diagramem uvnitř jádra, aproximované polynomickou formou ve výborné shodě s přesnými údaji získanými integrací Monte Carlo. Porovnání s hypernetted-chain teorií a Perkusovou-Yevickovou (PY) teorií ukazuje, že PY je lepší pouze pro redukované teploty menší než 1. PY řešení však není přesné ani při redukované teplotě rovné nule (limit tuhých koulí), kde nedochází k praktickému vzájemnému vyrušení zanedbaných diagramů. (cs)
|
Title
| - Radial Distribution Function of Penetrable Sphere Fluids to the Second Order in Density
- Radial Distribution Function of Penetrable Sphere Fluids to the Second Order in Density (en)
- Radiální distribuční funkce tekutiny prostupných koulí do druhého řádu v hustotě (cs)
|
skos:prefLabel
| - Radial Distribution Function of Penetrable Sphere Fluids to the Second Order in Density
- Radial Distribution Function of Penetrable Sphere Fluids to the Second Order in Density (en)
- Radiální distribuční funkce tekutiny prostupných koulí do druhého řádu v hustotě (cs)
|
skos:notation
| - RIV/67985858:_____/07:00305930!RIV08-AV0-67985858
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - Z(AV0Z40720504), Z(MSM0021620860)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/67985858:_____/07:00305930
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - penetrable spheres; cavity function; monte carlo integration (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - US - Spojené státy americké
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| |
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Malijevský, Alexandr
- Santos, A.
|
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |
is http://linked.open...avai/riv/vysledek
of | |