About: The averaging integral operator between weighted Lebesgue spaces and reverse Hölder inequalities     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Let 1 < p q < + and v, w be weights on (0, +) such that v(x)xρ is equivalent to a non-decreasing function on (0, +) for some ρ 0, and ... First, we prove that the operator ... if and only if the operator ... Second, we show that the boundedness of the averaging operator A on the space Lp((0, +); v) implies that, for all r > 0, the weight v1-p' satisfies the reverse Hlder inequality over the interval (0, r) with respect to the measure dt, while the weight v satisfies the reverse Hlder inequality over the interval (r, +) with respect to the measure t-p dt. As a corollary, we obtain that the boundedness of the averaging operator A on the space Lp((0, +); v) is equivalent to the boundedness of the averaging operator A on the space Lp((0, +); v1+δ) for some δ > 0.
  • Let 1 < p q < + and v, w be weights on (0, +) such that v(x)xρ is equivalent to a non-decreasing function on (0, +) for some ρ 0, and ... First, we prove that the operator ... if and only if the operator ... Second, we show that the boundedness of the averaging operator A on the space Lp((0, +); v) implies that, for all r > 0, the weight v1-p' satisfies the reverse Hlder inequality over the interval (0, r) with respect to the measure dt, while the weight v satisfies the reverse Hlder inequality over the interval (r, +) with respect to the measure t-p dt. As a corollary, we obtain that the boundedness of the averaging operator A on the space Lp((0, +); v) is equivalent to the boundedness of the averaging operator A on the space Lp((0, +); v1+δ) for some δ > 0. (en)
Title
  • The averaging integral operator between weighted Lebesgue spaces and reverse Hölder inequalities
  • The averaging integral operator between weighted Lebesgue spaces and reverse Hölder inequalities (en)
skos:prefLabel
  • The averaging integral operator between weighted Lebesgue spaces and reverse Hölder inequalities
  • The averaging integral operator between weighted Lebesgue spaces and reverse Hölder inequalities (en)
skos:notation
  • RIV/67985840:_____/10:00342832!RIV11-GA0-67985840
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/08/0383), Z(AV0Z10190503)
http://linked.open...iv/cisloPeriodika
  • 8-10
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 248290
http://linked.open...ai/riv/idVysledku
  • RIV/67985840:_____/10:00342832
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • averaging integral operator; weighted Lebesque spaces; weights; Hardy-type inequalities; reverse Höldet inequalities (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [91B112BF36EC]
http://linked.open...i/riv/nazevZdroje
  • Complex Variables and Elliptic Equations. An International Journal
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 55
http://linked.open...iv/tvurceVysledku
  • Opic, Bohumír
http://linked.open...ain/vavai/riv/wos
  • 000282807200018
http://linked.open...n/vavai/riv/zamer
issn
  • 1747-6933
number of pages
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 116 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software