About: New BFA Method Based on Attractor Neural Network and Likelihood Maximization     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • What is suggested is a new approach to Boolean factor analysis, which is an extension of the previously proposed Boolean factor analysis method: Hopfield-like attractor neural network with increasing activity. We increased its applicability and robustness when complementing this method by a maximization of the learning set likelihood function defied according to the Noisy-OR generative model. We demonstrated the efficiency of the new method using the data set generated according to the model. Successful application of the method to the real data is shown when analyzing the data from the Kyoto Encyclopedia of Genes and Genomes database which contains full genome sequencing for 1368 organisms.
  • What is suggested is a new approach to Boolean factor analysis, which is an extension of the previously proposed Boolean factor analysis method: Hopfield-like attractor neural network with increasing activity. We increased its applicability and robustness when complementing this method by a maximization of the learning set likelihood function defied according to the Noisy-OR generative model. We demonstrated the efficiency of the new method using the data set generated according to the model. Successful application of the method to the real data is shown when analyzing the data from the Kyoto Encyclopedia of Genes and Genomes database which contains full genome sequencing for 1368 organisms. (en)
Title
  • New BFA Method Based on Attractor Neural Network and Likelihood Maximization
  • New BFA Method Based on Attractor Neural Network and Likelihood Maximization (en)
skos:prefLabel
  • New BFA Method Based on Attractor Neural Network and Likelihood Maximization
  • New BFA Method Based on Attractor Neural Network and Likelihood Maximization (en)
skos:notation
  • RIV/67985807:_____/14:00398493!RIV15-AV0-67985807
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(ED1.1.00/02.0070), P(EE.2.3.20.0073)
http://linked.open...iv/cisloPeriodika
  • 20 May
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 32339
http://linked.open...ai/riv/idVysledku
  • RIV/67985807:_____/14:00398493
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • recurrent neural network; associative memory; Hebbian learning rule; neural network application; data mining; statistics; Boolean factor analysis; information gain; dimension reduction; likelihood-maximization; bars problem (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [06098EB3FBA3]
http://linked.open...i/riv/nazevZdroje
  • Neurocomputing
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 132
http://linked.open...iv/tvurceVysledku
  • Frolov, A. A.
  • Húsek, Dušan
  • Polyakov, P. Y.
  • Snášel, V.
http://linked.open...ain/vavai/riv/wos
  • 000334480500003
issn
  • 0925-2312
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.neucom.2013.07.047
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 84 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software