About: Small sample estimation and testing for heavy tails     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • The aim of the paper is to introduce the distribution sensitive tail estimation procedure, which is easy to implement for various distributions. Here we construct distribution-sensitive estimators based on the Hills procedure using score moment estimators for other heavy-tailed distributions (Pareto, Fréchet, Burr, log-gama, inverse gamma, etc.), and to study their statistical properties, both theoretically (e.g consistency, asymptotical distribution) and by means of simulation experiments (e.g. comparisons of exact effectiveness of our method for different heavy tailed distributions). A specific problem is finding of an optimal threshold k, say, yielding a trade off in between of variance and bias of the Hill estimator. Simulation results by Embrechts et al. (1997) showed that the Hill estimator and its alternatives work well over large ranges of values for k in the case of Pareto distribution. However, Hill estimator is often giving wrong results for distributions different from the Pareto one. Their %22Hill horror plots%22 actually show deviations of the Hill estimates trending farther away from the true value of the tail index as k is increased. In this paper we illustrate t-Hill. We also quantify the robustness and compare efficiency with other competitors. The paper is organized as follows. First section is introduction. In section 2 we recall the theory of scalar score. In section 3 we discussed the t-Hill estimator, introduced firstly in Stehlík et al. (2011). The section 4 comparing t-Hill and Hill estimators follows. Therein contamination of underling data is controlled by means of score variance of Pareto distribution. Comparisons show that t-Hill estimator outperforms Hill estimator. In section 5 we introduce the t-Hill plot. We end with powers of selected tests for normality against Pareto distribution.
  • The aim of the paper is to introduce the distribution sensitive tail estimation procedure, which is easy to implement for various distributions. Here we construct distribution-sensitive estimators based on the Hills procedure using score moment estimators for other heavy-tailed distributions (Pareto, Fréchet, Burr, log-gama, inverse gamma, etc.), and to study their statistical properties, both theoretically (e.g consistency, asymptotical distribution) and by means of simulation experiments (e.g. comparisons of exact effectiveness of our method for different heavy tailed distributions). A specific problem is finding of an optimal threshold k, say, yielding a trade off in between of variance and bias of the Hill estimator. Simulation results by Embrechts et al. (1997) showed that the Hill estimator and its alternatives work well over large ranges of values for k in the case of Pareto distribution. However, Hill estimator is often giving wrong results for distributions different from the Pareto one. Their %22Hill horror plots%22 actually show deviations of the Hill estimates trending farther away from the true value of the tail index as k is increased. In this paper we illustrate t-Hill. We also quantify the robustness and compare efficiency with other competitors. The paper is organized as follows. First section is introduction. In section 2 we recall the theory of scalar score. In section 3 we discussed the t-Hill estimator, introduced firstly in Stehlík et al. (2011). The section 4 comparing t-Hill and Hill estimators follows. Therein contamination of underling data is controlled by means of score variance of Pareto distribution. Comparisons show that t-Hill estimator outperforms Hill estimator. In section 5 we introduce the t-Hill plot. We end with powers of selected tests for normality against Pareto distribution. (en)
Title
  • Small sample estimation and testing for heavy tails
  • Small sample estimation and testing for heavy tails (en)
skos:prefLabel
  • Small sample estimation and testing for heavy tails
  • Small sample estimation and testing for heavy tails (en)
skos:notation
  • RIV/67985807:_____/12:00390574!RIV13-AV0-67985807
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S, Z(AV0Z10300504)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 168561
http://linked.open...ai/riv/idVysledku
  • RIV/67985807:_____/12:00390574
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Hill estimator; heavy tail estimation; robustness; testing (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [6E33CABF0660]
http://linked.open...v/mistoKonaniAkce
  • Dublin
http://linked.open...i/riv/mistoVydani
  • The Hague
http://linked.open...i/riv/nazevZdroje
  • Proceedings of the 58th World Statistics Congress 2011
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Fabián, Zdeněk
  • Stehlík, M.
  • Střelec, L.
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • International Statistical Institute
https://schema.org/isbn
  • 978-90-73592-33-9
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software