About: Learning from Data by Neural Networks of Limited Complexity.     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Learning from data formalized as a minimization of a relularized empirical error is studied in terms of approximate minimization over sets of functions computable by networks with increasing number of hidden units. There are derived upper bounds on speed of convergence of infima achievable over networks with n hidden inits to the global infimum. The bounds are expressed in terms of norms tailored to the type of network units and moduli of continuity of regularized empirical error functionals.
  • Learning from data formalized as a minimization of a relularized empirical error is studied in terms of approximate minimization over sets of functions computable by networks with increasing number of hidden units. There are derived upper bounds on speed of convergence of infima achievable over networks with n hidden inits to the global infimum. The bounds are expressed in terms of norms tailored to the type of network units and moduli of continuity of regularized empirical error functionals. (en)
Title
  • Learning from Data by Neural Networks of Limited Complexity.
  • Learning from Data by Neural Networks of Limited Complexity. (en)
skos:prefLabel
  • Learning from Data by Neural Networks of Limited Complexity.
  • Learning from Data by Neural Networks of Limited Complexity. (en)
skos:notation
  • RIV/67985807:_____/03:06030188!RIV/2004/GA0/A06004/N
http://linked.open.../vavai/riv/strany
  • 146;151
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/02/0428), Z(AV0Z1030915)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 613298
http://linked.open...ai/riv/idVysledku
  • RIV/67985807:_____/03:06030188
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • learning from data; neural networks; kernel methods (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [96A5995F5572]
http://linked.open...v/mistoKonaniAkce
  • Florence [IT]
http://linked.open...i/riv/mistoVydani
  • Florence
http://linked.open...i/riv/nazevZdroje
  • Artificial Neural Networks in Pattern Recognition.
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...ocetUcastnikuAkce
http://linked.open...nichUcastnikuAkce
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Kůrková, Věra
  • Sanguineti, M.
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • University of Florence
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software