About: Ground Level Ozone Peak Forecast using Neural Networks and Kalman Filter.     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • A forecasting system for the maximum ozone concent. for the following day based on statistical methods has been developed and tested within the framework of cooperation between the Czech Hydromet. Inst. and Inst. of Computer Science. Predictors based on neural networks and Kalman filter have been developed for urban, rural and mountain types of measurement stations.The stations were clustered with the help of Kohonen maps. Input variables were selected by statistical tests and a genetic algorithm.
  • A forecasting system for the maximum ozone concent. for the following day based on statistical methods has been developed and tested within the framework of cooperation between the Czech Hydromet. Inst. and Inst. of Computer Science. Predictors based on neural networks and Kalman filter have been developed for urban, rural and mountain types of measurement stations.The stations were clustered with the help of Kohonen maps. Input variables were selected by statistical tests and a genetic algorithm. (en)
Title
  • Ground Level Ozone Peak Forecast using Neural Networks and Kalman Filter.
  • Ground Level Ozone Peak Forecast using Neural Networks and Kalman Filter. (en)
skos:prefLabel
  • Ground Level Ozone Peak Forecast using Neural Networks and Kalman Filter.
  • Ground Level Ozone Peak Forecast using Neural Networks and Kalman Filter. (en)
skos:notation
  • RIV/67985807:_____/00:06000202!RIV/2003/AV0/A06003/N
http://linked.open.../vavai/riv/strany
  • 3;8
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(VS96008), P(ZZ/520/2/97), Z(AV0Z1030915)
http://linked.open...iv/cisloPeriodika
  • 2
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 712169
http://linked.open...ai/riv/idVysledku
  • RIV/67985807:_____/00:06000202
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • N/A (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • SK - Slovenská republika
http://linked.open...ontrolniKodProRIV
  • [29ED3B5A78F4]
http://linked.open...i/riv/nazevZdroje
  • Meterological Journal
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...ocetUcastnikuAkce
http://linked.open...nichUcastnikuAkce
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 3
http://linked.open...iv/tvurceVysledku
  • Krejčíř, Pavel
  • Eben, Kryštof
  • Pelikán, Emil
  • Vondráček, Jiří
  • Keder, J.
http://linked.open...n/vavai/riv/zamer
issn
  • 1335-339X
number of pages
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 117 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software