About: Polynomial Regression Aided Identification Method for a Class of Mechanical Systems     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Abstract—In this article we present a novel approach to identification of a class of mechanical systems that can be written in a form of Euler-Lagrage equations. This identification procedure is based on a polynomial regression that is employed for data smoothing and estimation. Procedure requires only the measurements of torques or forces that are used to control the system and measurements of angles or other co-ordinates that are used to specify the location of the system. This identification algorithm is demonstrated on the problem of identification of three link bipedal robot and the results indicate that the procedure is effective and over-performs classical approaches used to solve the problem.
  • Abstract—In this article we present a novel approach to identification of a class of mechanical systems that can be written in a form of Euler-Lagrage equations. This identification procedure is based on a polynomial regression that is employed for data smoothing and estimation. Procedure requires only the measurements of torques or forces that are used to control the system and measurements of angles or other co-ordinates that are used to specify the location of the system. This identification algorithm is demonstrated on the problem of identification of three link bipedal robot and the results indicate that the procedure is effective and over-performs classical approaches used to solve the problem. (en)
Title
  • Polynomial Regression Aided Identification Method for a Class of Mechanical Systems
  • Polynomial Regression Aided Identification Method for a Class of Mechanical Systems (en)
skos:prefLabel
  • Polynomial Regression Aided Identification Method for a Class of Mechanical Systems
  • Polynomial Regression Aided Identification Method for a Class of Mechanical Systems (en)
skos:notation
  • RIV/67985556:_____/14:00433945!RIV15-GA0-67985556
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GAP103/12/1794)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 37441
http://linked.open...ai/riv/idVysledku
  • RIV/67985556:_____/14:00433945
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Identification; Walking robots; Regression (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [3861993E30B1]
http://linked.open...v/mistoKonaniAkce
  • Palermo
http://linked.open...i/riv/mistoVydani
  • Palermo
http://linked.open...i/riv/nazevZdroje
  • Proceedings of the 2014 22nd Mediterranean Conference on Control and Automation (MED)
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Dolinský, Kamil
  • Čelikovský, Sergej
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • IEEE
https://schema.org/isbn
  • 978-1-4799-5899-3
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 97 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software