About: The Problem of Fragile Feature Subset Preference in Feature Selection Methods and A Proposal of Algorithmic Workaround     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • We point out a problem inherent in the optimization scheme of many popular feature selection methods. It follows from the implicit assumption that higher feature selection criterion value always indicates more preferable subset even if the value difference is marginal. This assumption ignores the reliability issues of particular feature preferences, overfitting and feature acquisition cost. We propose an algorithmic extension applicable to many standard feature selection methods allowing better control over feature subset preference. We show experimentally that the proposed mechanism is capable of reducing the size of selected subsets as well as improving classifier generalization.
  • We point out a problem inherent in the optimization scheme of many popular feature selection methods. It follows from the implicit assumption that higher feature selection criterion value always indicates more preferable subset even if the value difference is marginal. This assumption ignores the reliability issues of particular feature preferences, overfitting and feature acquisition cost. We propose an algorithmic extension applicable to many standard feature selection methods allowing better control over feature subset preference. We show experimentally that the proposed mechanism is capable of reducing the size of selected subsets as well as improving classifier generalization. (en)
Title
  • The Problem of Fragile Feature Subset Preference in Feature Selection Methods and A Proposal of Algorithmic Workaround
  • The Problem of Fragile Feature Subset Preference in Feature Selection Methods and A Proposal of Algorithmic Workaround (en)
skos:prefLabel
  • The Problem of Fragile Feature Subset Preference in Feature Selection Methods and A Proposal of Algorithmic Workaround
  • The Problem of Fragile Feature Subset Preference in Feature Selection Methods and A Proposal of Algorithmic Workaround (en)
skos:notation
  • RIV/67985556:_____/10:00348710!RIV11-MSM-67985556
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1M0572), P(2C06019), P(GA102/07/1594), P(GA102/08/0593), Z(AV0Z10750506)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 282138
http://linked.open...ai/riv/idVysledku
  • RIV/67985556:_____/10:00348710
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • feature selection; machine learning; over-fitting; classification; feature weights; weighted features; feature acquisition cost (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [F3D86A04B48F]
http://linked.open...v/mistoKonaniAkce
  • Istanbul
http://linked.open...i/riv/mistoVydani
  • Istanbul
http://linked.open...i/riv/nazevZdroje
  • Proc. 2010 Int. Conf. on Pattern Recognition
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Grim, Jiří
  • Pudil, Pavel
  • Somol, Petr
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • IEEE Computer Society
https://schema.org/isbn
  • 978-0-7695-4109-9
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software