About: Efficient Feature Subset Selection and Subset Size Optimization     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • A broad class of decision-making problems can be solved by learning approach. This can be a feasible alternative when neither an analytical solution exists nor the mathematical model can be constructed. In these cases the required knowledge can be gained from the past data which form the so-called learning or training set. Then the formal apparatus of statistical pattern recognition can be used to learn the decision-making. The first and essential step of statistical pattern recognition is to solve the problem of feature selection (FS) or more generally dimensionality reduction (DR). The chapter summarizes the state of art in feature selection, addressing key topics including: FS categorization, FS criteria, FS search strategies, FS stability.
  • A broad class of decision-making problems can be solved by learning approach. This can be a feasible alternative when neither an analytical solution exists nor the mathematical model can be constructed. In these cases the required knowledge can be gained from the past data which form the so-called learning or training set. Then the formal apparatus of statistical pattern recognition can be used to learn the decision-making. The first and essential step of statistical pattern recognition is to solve the problem of feature selection (FS) or more generally dimensionality reduction (DR). The chapter summarizes the state of art in feature selection, addressing key topics including: FS categorization, FS criteria, FS search strategies, FS stability. (en)
Title
  • Efficient Feature Subset Selection and Subset Size Optimization
  • Efficient Feature Subset Selection and Subset Size Optimization (en)
skos:prefLabel
  • Efficient Feature Subset Selection and Subset Size Optimization
  • Efficient Feature Subset Selection and Subset Size Optimization (en)
skos:notation
  • RIV/67985556:_____/10:00342820!RIV11-MSM-67985556
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1M0572), P(2C06019), P(GA102/07/1594), P(GA102/08/0593), Z(AV0Z10750506)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 256395
http://linked.open...ai/riv/idVysledku
  • RIV/67985556:_____/10:00342820
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • dimensionality reduction; pattern recognition; machine learning; feature selection; optimization; subset search; classification (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [C1A142E5C3AF]
http://linked.open...i/riv/mistoVydani
  • Vukovar, Croatia
http://linked.open...i/riv/nazevZdroje
  • Pattern Recognition, Recent Advances
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...v/pocetStranKnihy
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Pudil, Pavel
  • Somol, Petr
  • Novovičová, Jana
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • In-Teh
https://schema.org/isbn
  • 978-953-7619-90-9
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software