About: A Computational Study of the Oligosaccharide Binding Sites in the Lectin-Like Domain of Tumor Necrosis Factor and the TNF-derived TIP Peptide     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The lectin-like domain of Tumor Necrosis Factor (TNF), mimicked by the TIP peptide, activates amiloride-sensitive sodium uptake in type II alveolar epithelial cells and as such increases alveolar liquid clearance in dysfunctional lungs. This protective effect is blunted upon mutation of residues T105, E107 and E110 in human TNF into alanine or upon pre-incubation of the cytokine with the disaccharide N,N'-diacetylchitobiose. In this study, we used molecular docking and molecular dynamics simulation to predict the binding sites for N, N'-diacetylchitobiose and trimannose-O-ethyl in the lectin-like domain of TNF and in the TIP peptide. Specific sites (K98, S99, P100, Q102 and E116) in the three loops of the lectin-like domain provide specific binding for both oligosaccharides, but none of the residues crucial for anti-edema activity are involved in hydrogen bonding with oligosaccharides or are subjected to steric hindrance by them. These results thus suggest that neither chitobiose nor trimannose affect crucial amino acids, while they occupy the cavity in the lectin-like domain. Consequently, both crucial amino acids and the emptiness of the cavity in the lectin-like domain may be critical for TNF's lectin-like activity. Analogously, the R4, E5, P7, Y16 amino acids of the TIP peptide are involved in forming hydrogen bonds with both oligosaccharides, whereas residues T6, E8 and E11 (corresponding to T105, E107 and E110 in hTNF) play an important role in stabilizing the peptide-oligosaccharide complex, supporting the hypothesis that amino acids in the polar region (TPEGAE) of the TIP peptide represent only a partial binding motif for sugars.
  • The lectin-like domain of Tumor Necrosis Factor (TNF), mimicked by the TIP peptide, activates amiloride-sensitive sodium uptake in type II alveolar epithelial cells and as such increases alveolar liquid clearance in dysfunctional lungs. This protective effect is blunted upon mutation of residues T105, E107 and E110 in human TNF into alanine or upon pre-incubation of the cytokine with the disaccharide N,N'-diacetylchitobiose. In this study, we used molecular docking and molecular dynamics simulation to predict the binding sites for N, N'-diacetylchitobiose and trimannose-O-ethyl in the lectin-like domain of TNF and in the TIP peptide. Specific sites (K98, S99, P100, Q102 and E116) in the three loops of the lectin-like domain provide specific binding for both oligosaccharides, but none of the residues crucial for anti-edema activity are involved in hydrogen bonding with oligosaccharides or are subjected to steric hindrance by them. These results thus suggest that neither chitobiose nor trimannose affect crucial amino acids, while they occupy the cavity in the lectin-like domain. Consequently, both crucial amino acids and the emptiness of the cavity in the lectin-like domain may be critical for TNF's lectin-like activity. Analogously, the R4, E5, P7, Y16 amino acids of the TIP peptide are involved in forming hydrogen bonds with both oligosaccharides, whereas residues T6, E8 and E11 (corresponding to T105, E107 and E110 in hTNF) play an important role in stabilizing the peptide-oligosaccharide complex, supporting the hypothesis that amino acids in the polar region (TPEGAE) of the TIP peptide represent only a partial binding motif for sugars. (en)
Title
  • A Computational Study of the Oligosaccharide Binding Sites in the Lectin-Like Domain of Tumor Necrosis Factor and the TNF-derived TIP Peptide
  • A Computational Study of the Oligosaccharide Binding Sites in the Lectin-Like Domain of Tumor Necrosis Factor and the TNF-derived TIP Peptide (en)
skos:prefLabel
  • A Computational Study of the Oligosaccharide Binding Sites in the Lectin-Like Domain of Tumor Necrosis Factor and the TNF-derived TIP Peptide
  • A Computational Study of the Oligosaccharide Binding Sites in the Lectin-Like Domain of Tumor Necrosis Factor and the TNF-derived TIP Peptide (en)
skos:notation
  • RIV/67179843:_____/12:00381592!RIV13-AV0-67179843
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(IAA608170901)
http://linked.open...iv/cisloPeriodika
  • 27
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 120121
http://linked.open...ai/riv/idVysledku
  • RIV/67179843:_____/12:00381592
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • lectin-like domain; tumor necrosis factor; TIP peptide; oligosaccharides; molecular docking; molecular dynamics simulation; alveolar liquid clearance (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [2818B5AF0258]
http://linked.open...i/riv/nazevZdroje
  • Current Pharmaceutical Design
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 18
http://linked.open...iv/tvurceVysledku
  • Ettrich, Rüdiger
  • Dulebo, A.
  • Kaftan, D.
  • Lucas, R.
http://linked.open...ain/vavai/riv/wos
  • 000307871200016
issn
  • 1381-6128
number of pages
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 85 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software