About: High Frequency Data: Making Forecasts and Looking for an Optimal Forecasting Horizon     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • We illustrate the AutoRegessiveiGeneralised collditionaliy Heteros§cedastic (ARCH-GARCH) methodology on the developing a forecast mode! for exchange rates time series of the Czech crown (CZK) againsr the Slovak crown (SKK) and make comparisons the forecast accuracy with the class of Radial Basic Functiov Neural neural network RBF NN models. To illustrate the forecasting performance of these approaches the inIJu t/r.utput function estimation based on REF networks is presented. III a comparative study is shown that the RBF NN approach is able to model and predkt high frequency data with reasol1abie accuracy and more efficient than statistical methods. In order to find the optima! forecasting horizon, we use the analysis of fo recast errors and choose tnt values that give the smallest error variance. It is found that the error variance estimation process based on soft methods is simplified and less critical to the question whether the data is true crisp or white noise.
  • We illustrate the AutoRegessiveiGeneralised collditionaliy Heteros§cedastic (ARCH-GARCH) methodology on the developing a forecast mode! for exchange rates time series of the Czech crown (CZK) againsr the Slovak crown (SKK) and make comparisons the forecast accuracy with the class of Radial Basic Functiov Neural neural network RBF NN models. To illustrate the forecasting performance of these approaches the inIJu t/r.utput function estimation based on REF networks is presented. III a comparative study is shown that the RBF NN approach is able to model and predkt high frequency data with reasol1abie accuracy and more efficient than statistical methods. In order to find the optima! forecasting horizon, we use the analysis of fo recast errors and choose tnt values that give the smallest error variance. It is found that the error variance estimation process based on soft methods is simplified and less critical to the question whether the data is true crisp or white noise. (en)
Title
  • High Frequency Data: Making Forecasts and Looking for an Optimal Forecasting Horizon
  • High Frequency Data: Making Forecasts and Looking for an Optimal Forecasting Horizon (en)
skos:prefLabel
  • High Frequency Data: Making Forecasts and Looking for an Optimal Forecasting Horizon
  • High Frequency Data: Making Forecasts and Looking for an Optimal Forecasting Horizon (en)
skos:notation
  • RIV/63468352:_____/10:#0000301!RIV13-MSM-63468352
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • N, P(GA402/08/0022)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 261503
http://linked.open...ai/riv/idVysledku
  • RIV/63468352:_____/10:#0000301
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • time series, ARCH-GARCH models, soft neural networks, granular computing, forecast accuracy (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [8514DBEC2E6F]
http://linked.open...v/mistoKonaniAkce
  • Yantai
http://linked.open...i/riv/mistoVydani
  • China
http://linked.open...i/riv/nazevZdroje
  • Sixth International Conference on Natural Computation
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Marček, Dušan
  • Matušík, Petr
  • Marček, M.
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • Neuveden
https://schema.org/isbn
  • 978-1-4244-5960-5
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software