About: Natural occurrence of enantiomers of organic compounds versus phytoremediations: Should research on phytoremediations be revisited? A mini-review     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Decontamination of polluted soils using plants is based on the ability of plant species (including transgenic plants) to enhance bioavailability of pollutants in the rhizosphere and support growth of pollutant-degrading microorganisms via root exudation and plant species-specific composition of the exudates. In this work, we review current knowledge of enantiomers of low-molecular-weight (LMW) organic compounds with emphasis on their use in phytoremediation. Many research studies have been performed to search for plants suitable for decontamination of polluted soils. Nevertheless, the natural occurrence of L- versus D-enantiomers of dominant compounds of plant root exudates which play different roles in the complexation of heavy metals, chemoattraction, and support of pollutant-degrading microorganisms were not included in these studies. D-enantiomers of aliphatic organic acids and amino acids or L-enantiomers of carbohydrates occur in high concentrations in root exudates of some plant species, especially under stress, and are less stimulatory for plants to extract heavy metals or for rhizosphere microflora to degrade pollutants compared with L-enantiomers (organic acids and amino acids) or D-carbohydrates. Determining the ratio of L- versus D-enantiomers of organic compounds as a criterion of plant suitability for decontamination of polluted soils and development of other types of bioremediation technologies need to be subjects of future research.
  • Decontamination of polluted soils using plants is based on the ability of plant species (including transgenic plants) to enhance bioavailability of pollutants in the rhizosphere and support growth of pollutant-degrading microorganisms via root exudation and plant species-specific composition of the exudates. In this work, we review current knowledge of enantiomers of low-molecular-weight (LMW) organic compounds with emphasis on their use in phytoremediation. Many research studies have been performed to search for plants suitable for decontamination of polluted soils. Nevertheless, the natural occurrence of L- versus D-enantiomers of dominant compounds of plant root exudates which play different roles in the complexation of heavy metals, chemoattraction, and support of pollutant-degrading microorganisms were not included in these studies. D-enantiomers of aliphatic organic acids and amino acids or L-enantiomers of carbohydrates occur in high concentrations in root exudates of some plant species, especially under stress, and are less stimulatory for plants to extract heavy metals or for rhizosphere microflora to degrade pollutants compared with L-enantiomers (organic acids and amino acids) or D-carbohydrates. Determining the ratio of L- versus D-enantiomers of organic compounds as a criterion of plant suitability for decontamination of polluted soils and development of other types of bioremediation technologies need to be subjects of future research. (en)
Title
  • Natural occurrence of enantiomers of organic compounds versus phytoremediations: Should research on phytoremediations be revisited? A mini-review
  • Natural occurrence of enantiomers of organic compounds versus phytoremediations: Should research on phytoremediations be revisited? A mini-review (en)
skos:prefLabel
  • Natural occurrence of enantiomers of organic compounds versus phytoremediations: Should research on phytoremediations be revisited? A mini-review
  • Natural occurrence of enantiomers of organic compounds versus phytoremediations: Should research on phytoremediations be revisited? A mini-review (en)
skos:notation
  • RIV/62156489:43410/14:00213765!RIV15-MSM-43410___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 31720
http://linked.open...ai/riv/idVysledku
  • RIV/62156489:43410/14:00213765
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • degradation; pollutant; sorption; rhizosphere; root exudate; chelation; enantiomer (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [131A6C1C47B6]
http://linked.open...i/riv/nazevZdroje
  • Chirality
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 26
http://linked.open...iv/tvurceVysledku
  • Formánek, Pavel
  • Rejšek, Klement
  • Vranová, Valerie
  • Lojková, Lea
http://linked.open...ain/vavai/riv/wos
  • 329437200002
issn
  • 0899-0042
number of pages
http://bibframe.org/vocab/doi
  • 10.1002/chir.22255
http://localhost/t...ganizacniJednotka
  • 43410
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 47 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software