About: On canonical almost geodesic mappings of the first type of affinely connected spaces     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • In this paper, we study special cases of canonical almost geodesic mappings of the first type of affinely connected spaces. The basic equations of mappings in question are reduced to a closed system of Cauchy type in covariant derivatives, and the number of essential parameters in the general solution of this system is estimated. We give an example of such mappings from a flat space onto another flat space. The mappings constructed send straight lines of the first space into parabolas in the second space. These almost geodesicmappings of the first type do not belong to the classes of mappings of the second and third types.
  • In this paper, we study special cases of canonical almost geodesic mappings of the first type of affinely connected spaces. The basic equations of mappings in question are reduced to a closed system of Cauchy type in covariant derivatives, and the number of essential parameters in the general solution of this system is estimated. We give an example of such mappings from a flat space onto another flat space. The mappings constructed send straight lines of the first space into parabolas in the second space. These almost geodesicmappings of the first type do not belong to the classes of mappings of the second and third types. (en)
Title
  • On canonical almost geodesic mappings of the first type of affinely connected spaces
  • On canonical almost geodesic mappings of the first type of affinely connected spaces (en)
skos:prefLabel
  • On canonical almost geodesic mappings of the first type of affinely connected spaces
  • On canonical almost geodesic mappings of the first type of affinely connected spaces (en)
skos:notation
  • RIV/61989592:15310/14:33151213!RIV15-GA0-15310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GAP201/11/0356)
http://linked.open...iv/cisloPeriodika
  • 2
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 34244
http://linked.open...ai/riv/idVysledku
  • RIV/61989592:15310/14:33151213
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • canonical almost geodesic mapping of the first type, affinely connected space (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [A8D433558B17]
http://linked.open...i/riv/nazevZdroje
  • Russian Mathematics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 58
http://linked.open...iv/tvurceVysledku
  • Mikeš, Josef
  • Berezovski, Vladimir
issn
  • 1066-369X
number of pages
http://bibframe.org/vocab/doi
  • 10.3103/S1066369X14020017
http://localhost/t...ganizacniJednotka
  • 15310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software