About: Forecasting FTSE Bursa Malaysia KLCI Trend with Hybrid Particle Swarm Optimization and Support Vector Machine Technique     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Stock trend forecasting is one of the important issues in stock market research. However, forecasting stock trend remains a challenge because of its irregular characteristic in the stock indices distribution, which changes over time. Support Vector Machine (SVM) produces a fairly good result in stock trend forecasting, but the performance of SVM can be affected by the high dimensional input features and noisy data. This paper hybridizes the Particle Swarm Optimization (PSO) algorithm to generate the optimum features set prior to facilitate SVM learning. The SVM algorithm uses the Radial Basis Function (RBF) kernel function and optimization of the gamma and large margin parameters are done using the PSO algorithm. The proposed algorithm was tested on a pre-sampled 17 years record of daily Kuala Lumpur Composite Index (KLCI) data. The PSOSVM approach is applied to eliminate unnecessary or insignificant features, and effectively determine the parameter values, in turn improving the overall prediction results. The optimized feature space of technical indicators of the algorithm is proven by the experimental results showing that PSOSVM has outperformed SVM technique significantly.
  • Stock trend forecasting is one of the important issues in stock market research. However, forecasting stock trend remains a challenge because of its irregular characteristic in the stock indices distribution, which changes over time. Support Vector Machine (SVM) produces a fairly good result in stock trend forecasting, but the performance of SVM can be affected by the high dimensional input features and noisy data. This paper hybridizes the Particle Swarm Optimization (PSO) algorithm to generate the optimum features set prior to facilitate SVM learning. The SVM algorithm uses the Radial Basis Function (RBF) kernel function and optimization of the gamma and large margin parameters are done using the PSO algorithm. The proposed algorithm was tested on a pre-sampled 17 years record of daily Kuala Lumpur Composite Index (KLCI) data. The PSOSVM approach is applied to eliminate unnecessary or insignificant features, and effectively determine the parameter values, in turn improving the overall prediction results. The optimized feature space of technical indicators of the algorithm is proven by the experimental results showing that PSOSVM has outperformed SVM technique significantly. (en)
Title
  • Forecasting FTSE Bursa Malaysia KLCI Trend with Hybrid Particle Swarm Optimization and Support Vector Machine Technique
  • Forecasting FTSE Bursa Malaysia KLCI Trend with Hybrid Particle Swarm Optimization and Support Vector Machine Technique (en)
skos:prefLabel
  • Forecasting FTSE Bursa Malaysia KLCI Trend with Hybrid Particle Swarm Optimization and Support Vector Machine Technique
  • Forecasting FTSE Bursa Malaysia KLCI Trend with Hybrid Particle Swarm Optimization and Support Vector Machine Technique (en)
skos:notation
  • RIV/61989100:27740/13:86089370!RIV14-MSM-27740___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED1.1.00/02.0070)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
  • Abraham Padath, Ajith
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 75427
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27740/13:86089370
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Support vector machine; Stock trend forecasting; RBF kernal function; Particle swarm optimization (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [EDB78A847B1E]
http://linked.open...v/mistoKonaniAkce
  • Fargo
http://linked.open...i/riv/mistoVydani
  • New York
http://linked.open...i/riv/nazevZdroje
  • 2013 World Congress on Nature and Biologically Inspired Computing, NaBIC 2013
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Abraham Padath, Ajith
  • Muda, A. K.
  • Choo, Y. H.
  • Zhen, Z.L.
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://bibframe.org/vocab/doi
  • 10.1109/NaBIC.2013.6617856
http://purl.org/ne...btex#hasPublisher
  • Elsevier
https://schema.org/isbn
  • 978-1-4799-1415-9
http://localhost/t...ganizacniJednotka
  • 27740
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software