About: Photocatalytical Nanocomposites: A Review     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • This review focuses on photocatalytically active nanocomposites that are based on the photoactive nanoparticles, or nanostructured particles captured on the surface of the different powderized carriers. Nanosized and nanostructured oxides and sulfides with selected metal cations (Ti, Zn, Cd, Fe, etc.) are intensively studied as the photocatalysts for different purposes. The nanodimension of these particles brings several disadvantages, among them being the negative impact on human health, which is a widely discussed topic nowadays. The nanoparticles can permeate through living tissue and enter living cells and thus a strong effort focused on diminishing this problem is the subject of research activities by many groups. One possible way to achieve control of the nanoparticles’ mobility is capturing them on the surface of suitable particulate carriers with dimensions on the order of tenths and hundredths of microns whereas this approach leads to formation of new composite material. Clay minerals, silicates, carbonaceous materials, and other particulate matter are intensively studied for these purposes and proper selection of the substrate can bring additional functionality to the final composite. Very often the photoactivity, antibacterial properties, electrical conductivity, and other properties are significantly enhanced in the case of this kind of composite materials. Strong adhesion between the nanoparticles and the surface of the selected substrate is essential for the stability of the final composites. Characterization of the adhesion energies using laboratory experiments is quite difficult and molecular modeling can bring valuable information about the character of interactions at the interface of nanoparticles and substrate.
  • This review focuses on photocatalytically active nanocomposites that are based on the photoactive nanoparticles, or nanostructured particles captured on the surface of the different powderized carriers. Nanosized and nanostructured oxides and sulfides with selected metal cations (Ti, Zn, Cd, Fe, etc.) are intensively studied as the photocatalysts for different purposes. The nanodimension of these particles brings several disadvantages, among them being the negative impact on human health, which is a widely discussed topic nowadays. The nanoparticles can permeate through living tissue and enter living cells and thus a strong effort focused on diminishing this problem is the subject of research activities by many groups. One possible way to achieve control of the nanoparticles’ mobility is capturing them on the surface of suitable particulate carriers with dimensions on the order of tenths and hundredths of microns whereas this approach leads to formation of new composite material. Clay minerals, silicates, carbonaceous materials, and other particulate matter are intensively studied for these purposes and proper selection of the substrate can bring additional functionality to the final composite. Very often the photoactivity, antibacterial properties, electrical conductivity, and other properties are significantly enhanced in the case of this kind of composite materials. Strong adhesion between the nanoparticles and the surface of the selected substrate is essential for the stability of the final composites. Characterization of the adhesion energies using laboratory experiments is quite difficult and molecular modeling can bring valuable information about the character of interactions at the interface of nanoparticles and substrate. (en)
Title
  • Photocatalytical Nanocomposites: A Review
  • Photocatalytical Nanocomposites: A Review (en)
skos:prefLabel
  • Photocatalytical Nanocomposites: A Review
  • Photocatalytical Nanocomposites: A Review (en)
skos:notation
  • RIV/61989100:27640/14:86088662!RIV14-MSM-27640___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED1.1.00/02.0070), P(LH12184), S
http://linked.open...iv/cisloPeriodika
  • 8
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 36476
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27640/14:86088662
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Photodegradation; Substrates; Photocatalysts; Nanocomposites (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [65D848A6B00F]
http://linked.open...i/riv/nazevZdroje
  • Journal of nanoscience and nanotechnology
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 14
http://linked.open...iv/tvurceVysledku
  • Matějka, Vlastimil
  • Tokarský, Jonáš
issn
  • 1533-4880
number of pages
http://bibframe.org/vocab/doi
  • 10.1166/jnn.2014.9081
http://localhost/t...ganizacniJednotka
  • 27640
Faceted Search & Find service v1.16.116 as of Feb 22 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3239 as of Feb 22 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 81 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software