About: Mathematical Simulation in Optimisation of Roll Pass Progression     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The results concern roll pass design for rolling a round bar of a 20mm diameter from a 50mm input. Concerning materials, this roll pass design must cover a wide range of steels, from low-carbon micro-alloyed steels to stainless steels. The roll pass design proposal takes into consideration lower plasticity of certain steels. The comparison was enabled by suggesting two roll pass designs. The classical roll pass design oval-round, where the maximum extension coefficient is set to 1.55 in oval and 1.22 in round grooves. The second roll pass design uses a combination of smooth part of the roll (curves) and round roll passes. Distribution of the extension coefficient in individual passes is similar to that of oval-round series. The paper also compares values of energy-force parameters calculated analytically using the method of finite elements. If we compare the distribution of temperature, stress and size of the grain, it is proved that the oval-round roll pass designs are the best as far as the balanced distribution of the above-mentioned values is concerned. The roll pas design smooth part of the roll-round does not achieve such balance. However, its advantage lies in far lower requirement for the needed length of the working part of the roll. Five passes are carried out on the smooth part of the roll, which considerably cuts down the required length of the roll body. Therefore it is this variant that will be used in the laboratory of wire rolling created within the project RMSTC.
  • The results concern roll pass design for rolling a round bar of a 20mm diameter from a 50mm input. Concerning materials, this roll pass design must cover a wide range of steels, from low-carbon micro-alloyed steels to stainless steels. The roll pass design proposal takes into consideration lower plasticity of certain steels. The comparison was enabled by suggesting two roll pass designs. The classical roll pass design oval-round, where the maximum extension coefficient is set to 1.55 in oval and 1.22 in round grooves. The second roll pass design uses a combination of smooth part of the roll (curves) and round roll passes. Distribution of the extension coefficient in individual passes is similar to that of oval-round series. The paper also compares values of energy-force parameters calculated analytically using the method of finite elements. If we compare the distribution of temperature, stress and size of the grain, it is proved that the oval-round roll pass designs are the best as far as the balanced distribution of the above-mentioned values is concerned. The roll pas design smooth part of the roll-round does not achieve such balance. However, its advantage lies in far lower requirement for the needed length of the working part of the roll. Five passes are carried out on the smooth part of the roll, which considerably cuts down the required length of the roll body. Therefore it is this variant that will be used in the laboratory of wire rolling created within the project RMSTC. (en)
Title
  • Mathematical Simulation in Optimisation of Roll Pass Progression
  • Mathematical Simulation in Optimisation of Roll Pass Progression (en)
skos:prefLabel
  • Mathematical Simulation in Optimisation of Roll Pass Progression
  • Mathematical Simulation in Optimisation of Roll Pass Progression (en)
skos:notation
  • RIV/61989100:27360/11:86081447!RIV12-MSM-27360___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED0040/01/01), Z(MSM6198910015)
http://linked.open...iv/cisloPeriodika
  • 4
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 210924
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27360/11:86081447
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • mathematical simulation, roll pass design, gooved rolls, bars rolling (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • CZ - Česká republika
http://linked.open...ontrolniKodProRIV
  • [7397149C4632]
http://linked.open...i/riv/nazevZdroje
  • Hutnické listy
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 64
http://linked.open...iv/tvurceVysledku
  • Kubina, Tomáš
  • Aksenov, Sergey
http://linked.open...n/vavai/riv/zamer
issn
  • 0018-8069
number of pages
http://localhost/t...ganizacniJednotka
  • 27360
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 77 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software