About: Image segmentation using iterated graph cuts with residual graph     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • In this paper, we present a new image segmentation method using iterated graph cuts. In the standard graph cuts method, the data term is computed on the basis of the brightness/color distribution of object and background. In this case, some background regions with the brightness/color similar to the object may be incorrectly labeled as an object. We try to overcome this drawback by introducing a new data term that reduces the importance of brightness/color distribution. This reduction is realised by a new part that uses data from a residual graph that remains after performing the max-flow algorithm. According to the residual weights, we change the weights of t-links in the graph and find a new cut on this graph. This operation makes our method iterative. The results and comparison with other graph cuts methods are presented.
  • In this paper, we present a new image segmentation method using iterated graph cuts. In the standard graph cuts method, the data term is computed on the basis of the brightness/color distribution of object and background. In this case, some background regions with the brightness/color similar to the object may be incorrectly labeled as an object. We try to overcome this drawback by introducing a new data term that reduces the importance of brightness/color distribution. This reduction is realised by a new part that uses data from a residual graph that remains after performing the max-flow algorithm. According to the residual weights, we change the weights of t-links in the graph and find a new cut on this graph. This operation makes our method iterative. The results and comparison with other graph cuts methods are presented. (en)
Title
  • Image segmentation using iterated graph cuts with residual graph
  • Image segmentation using iterated graph cuts with residual graph (en)
skos:prefLabel
  • Image segmentation using iterated graph cuts with residual graph
  • Image segmentation using iterated graph cuts with residual graph (en)
skos:notation
  • RIV/61989100:27240/13:86088519!RIV14-MSM-27240___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 78868
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27240/13:86088519
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • residual graph; graph cuts; Image segmentation (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [1BCC9D6642C9]
http://linked.open...v/mistoKonaniAkce
  • Rethymnon
http://linked.open...i/riv/mistoVydani
  • London
http://linked.open...i/riv/nazevZdroje
  • Lecture Notes in Computer Science. Volume 8033
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Sojka, Eduard
  • Holuša, Michael
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
issn
  • 0302-9743
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/978-3-642-41914-0_23
http://purl.org/ne...btex#hasPublisher
  • Springer-Verlag
https://schema.org/isbn
  • 978-3-642-41913-3
http://localhost/t...ganizacniJednotka
  • 27240
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software