About: Parallel Solution of Contact Problems     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • An efficient non-overlapping domain decomposition algorithm of the Neumann-Neumann type for solving both coercive and semicoercive frictionless contact problems of elasticity has been recently presented. The method reduces, by the duality theory of convex programming, the discretized problem to a quadratic programming problem with simple bounds and equality constraints on the contact interface. this dual problem is space, and the resulting problem is solved by an augmented Lagrantian type algorithm. Theprojectors guarance an optimal rate of convergence for the solution of auxiliary linear problems by the conjugate gradients method. With this approach, it is possible to deal separately with each body or subdomain, so that the algorithm can be implement ed in parallel. In this paper, an efficient parallel implementation of this method is presented, together with numerical experiments that indicate the high parallel scalability of the algorithm.
  • An efficient non-overlapping domain decomposition algorithm of the Neumann-Neumann type for solving both coercive and semicoercive frictionless contact problems of elasticity has been recently presented. The method reduces, by the duality theory of convex programming, the discretized problem to a quadratic programming problem with simple bounds and equality constraints on the contact interface. this dual problem is space, and the resulting problem is solved by an augmented Lagrantian type algorithm. Theprojectors guarance an optimal rate of convergence for the solution of auxiliary linear problems by the conjugate gradients method. With this approach, it is possible to deal separately with each body or subdomain, so that the algorithm can be implement ed in parallel. In this paper, an efficient parallel implementation of this method is presented, together with numerical experiments that indicate the high parallel scalability of the algorithm. (en)
Title
  • Parallel Solution of Contact Problems
  • Parallel Solution of Contact Problems (en)
skos:prefLabel
  • Parallel Solution of Contact Problems
  • Parallel Solution of Contact Problems (en)
skos:notation
  • RIV/61989100:27240/01:00000999!RIV/2002/GA0/272402/N
http://linked.open.../vavai/riv/strany
  • 73-85
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA101/01/0538), P(GA101/98/0535), P(GA201/97/0421), Z(MSM 272400019)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 721132
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27240/01:00000999
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • parallel solution of contact problems (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [BFB1610926F9]
http://linked.open...v/mistoKonaniAkce
  • Cambridge, England
http://linked.open...i/riv/mistoVydani
  • New York
http://linked.open...i/riv/nazevZdroje
  • Shape Optimization and Optimal Design
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...ocetUcastnikuAkce
http://linked.open...nichUcastnikuAkce
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Dostál, Zdeněk
  • Santos, S. A.
  • Gomes, F. A. M.
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Marcel Dekker, Inc.
https://schema.org/isbn
  • 0-8247-0556-4
http://localhost/t...ganizacniJednotka
  • 27240
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software