Attributes | Values |
---|
rdf:type
| |
Description
| - An efficient non-overlapping domain decomposition algorithm of the Neumann-Neumann type for solving both coercive and semicoercive frictionless contact problems of elasticity has been recently presented. The method reduces, by the duality theory of convex programming, the discretized problem to a quadratic programming problem with simple bounds and equality constraints on the contact interface. this dual problem is space, and the resulting problem is solved by an augmented Lagrantian type algorithm. Theprojectors guarance an optimal rate of convergence for the solution of auxiliary linear problems by the conjugate gradients method. With this approach, it is possible to deal separately with each body or subdomain, so that the algorithm can be implement ed in parallel. In this paper, an efficient parallel implementation of this method is presented, together with numerical experiments that indicate the high parallel scalability of the algorithm.
- An efficient non-overlapping domain decomposition algorithm of the Neumann-Neumann type for solving both coercive and semicoercive frictionless contact problems of elasticity has been recently presented. The method reduces, by the duality theory of convex programming, the discretized problem to a quadratic programming problem with simple bounds and equality constraints on the contact interface. this dual problem is space, and the resulting problem is solved by an augmented Lagrantian type algorithm. Theprojectors guarance an optimal rate of convergence for the solution of auxiliary linear problems by the conjugate gradients method. With this approach, it is possible to deal separately with each body or subdomain, so that the algorithm can be implement ed in parallel. In this paper, an efficient parallel implementation of this method is presented, together with numerical experiments that indicate the high parallel scalability of the algorithm. (en)
|
Title
| - Parallel Solution of Contact Problems
- Parallel Solution of Contact Problems (en)
|
skos:prefLabel
| - Parallel Solution of Contact Problems
- Parallel Solution of Contact Problems (en)
|
skos:notation
| - RIV/61989100:27240/01:00000999!RIV/2002/GA0/272402/N
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(GA101/01/0538), P(GA101/98/0535), P(GA201/97/0421), Z(MSM 272400019)
|
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/61989100:27240/01:00000999
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - parallel solution of contact problems (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...v/mistoKonaniAkce
| |
http://linked.open...i/riv/mistoVydani
| |
http://linked.open...i/riv/nazevZdroje
| - Shape Optimization and Optimal Design
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...ocetUcastnikuAkce
| |
http://linked.open...nichUcastnikuAkce
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| - Dostál, Zdeněk
- Santos, S. A.
- Gomes, F. A. M.
|
http://linked.open...vavai/riv/typAkce
| |
http://linked.open.../riv/zahajeniAkce
| |
http://linked.open...n/vavai/riv/zamer
| |
number of pages
| |
http://purl.org/ne...btex#hasPublisher
| |
https://schema.org/isbn
| |
http://localhost/t...ganizacniJednotka
| |