About: Robust Algorithm for Estimation of Parameters in Non-linear Regression Model     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The paper deals with algorithms for estimation of non-linear regression parameters. Stochastic population-based algorithm with competition was implemented and compared with standard gradient algorithm commonly used for least-squares estimates. The results show that this stochastic algorithm found the global minimum in most tasks where gradient algorithm fails. Such population-based algorithms can be used as a tool for estimation of non-linear regression parameters, especially in tasks of higher difficulty level or in tasks when suitable starting values for gradient method are not available.
  • The paper deals with algorithms for estimation of non-linear regression parameters. Stochastic population-based algorithm with competition was implemented and compared with standard gradient algorithm commonly used for least-squares estimates. The results show that this stochastic algorithm found the global minimum in most tasks where gradient algorithm fails. Such population-based algorithms can be used as a tool for estimation of non-linear regression parameters, especially in tasks of higher difficulty level or in tasks when suitable starting values for gradient method are not available. (en)
  • The paper deals with algorithms for estimation of non-linear regression parameters. Stochastic population-based algorithm with competition was implemented and compared with standard gradient algorithm commonly used for least-squares estimates. The results show that this stochastic algorithm found the global minimum in most tasks where gradient algorithm fails. Such population-based algorithms can be used as a tool for estimation of non-linear regression parameters, especially in tasks of higher difficulty level or in tasks when suitable starting values for gradient method are not available. (cs)
Title
  • Robust Algorithm for Estimation of Parameters in Non-linear Regression Model
  • Robust Algorithm for Estimation of Parameters in Non-linear Regression Model (en)
  • Robust Algorithm for Estimation of Parameters in Non-linear Regression Model (cs)
skos:prefLabel
  • Robust Algorithm for Estimation of Parameters in Non-linear Regression Model
  • Robust Algorithm for Estimation of Parameters in Non-linear Regression Model (en)
  • Robust Algorithm for Estimation of Parameters in Non-linear Regression Model (cs)
skos:notation
  • RIV/61988987:17310/05:A1000DFK!RIV10-MSM-17310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/05/0284), Z(MSM6198898701)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 541301
http://linked.open...ai/riv/idVysledku
  • RIV/61988987:17310/05:A1000DFK
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • global optimization; stochastic algorithms; competing heuristics; non-linear regression; NIST datasets; MATLAB (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [57D3CEBDDA01]
http://linked.open...v/mistoKonaniAkce
  • Praha
http://linked.open...i/riv/mistoVydani
  • Praha
http://linked.open...i/riv/nazevZdroje
  • International conferenceTechnical Computing Prague 2005
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Tvrdík, Josef
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Humusoft
https://schema.org/isbn
  • 80-7080-577-3
http://localhost/t...ganizacniJednotka
  • 17310
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 84 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software