AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Plants feature remarkable developmental plasticity, enabling them to respond to and cope with environmental cues, such as limited availability of phosphate, an essential macronutrient for all organisms. Under this condition, Arabidopsis (Arabidopsis thaliana) roots undergo striking morphological changes, including exhaustion of the primary meristem, impaired unidirectional cell expansion, and elevated density of lateral roots, resulting in shallow root architecture. Here, we show that the activity of two homologous brassinosteroid (BR) transcriptional effectors, BRASSINAZOLE RESISTANT1 (BZR1) and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1)/BZR2, blocks these responses, consequently maintaining normal root development under low phosphate conditions without impacting phosphate homeostasis. We show that phosphate deprivation shifts the intracellular localization of BES1/BZR2 to yield a lower nucleus-to-cytoplasm ratio, whereas replenishing the phosphate supply reverses this ratio within hours. Phosphate deprivation reduces the expression levels of BR biosynthesis genes and the accumulation of the bioactive BR 28-norcastasterone. In agreement, low and high BR levels sensitize and desensitize root response to this adverse condition, respectively. Hence, we propose that the environmentally controlled developmental switch from deep to shallow root architecture involves reductions in BZR1 and BES1/BZR2 levels in the nucleus, which likely play key roles in plant adaptation to phosphate-deficient environments.
  • Plants feature remarkable developmental plasticity, enabling them to respond to and cope with environmental cues, such as limited availability of phosphate, an essential macronutrient for all organisms. Under this condition, Arabidopsis (Arabidopsis thaliana) roots undergo striking morphological changes, including exhaustion of the primary meristem, impaired unidirectional cell expansion, and elevated density of lateral roots, resulting in shallow root architecture. Here, we show that the activity of two homologous brassinosteroid (BR) transcriptional effectors, BRASSINAZOLE RESISTANT1 (BZR1) and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1)/BZR2, blocks these responses, consequently maintaining normal root development under low phosphate conditions without impacting phosphate homeostasis. We show that phosphate deprivation shifts the intracellular localization of BES1/BZR2 to yield a lower nucleus-to-cytoplasm ratio, whereas replenishing the phosphate supply reverses this ratio within hours. Phosphate deprivation reduces the expression levels of BR biosynthesis genes and the accumulation of the bioactive BR 28-norcastasterone. In agreement, low and high BR levels sensitize and desensitize root response to this adverse condition, respectively. Hence, we propose that the environmentally controlled developmental switch from deep to shallow root architecture involves reductions in BZR1 and BES1/BZR2 levels in the nucleus, which likely play key roles in plant adaptation to phosphate-deficient environments. (en)
Title
  • Activity of the Brassinosteroid Transcription Factors BRASSINAZOLE RESISTANT1 and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1/BRASSINAZOLE RESISTANT2 Blocks Developmental Reprogramming in Response to Low Phosphate Availability
  • Activity of the Brassinosteroid Transcription Factors BRASSINAZOLE RESISTANT1 and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1/BRASSINAZOLE RESISTANT2 Blocks Developmental Reprogramming in Response to Low Phosphate Availability (en)
skos:prefLabel
  • Activity of the Brassinosteroid Transcription Factors BRASSINAZOLE RESISTANT1 and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1/BRASSINAZOLE RESISTANT2 Blocks Developmental Reprogramming in Response to Low Phosphate Availability
  • Activity of the Brassinosteroid Transcription Factors BRASSINAZOLE RESISTANT1 and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1/BRASSINAZOLE RESISTANT2 Blocks Developmental Reprogramming in Response to Low Phosphate Availability (en)
skos:notation
  • RIV/61389030:_____/14:00433902!RIV15-AV0-61389030
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GA14-34792S)
http://linked.open...iv/cisloPeriodika
  • 2
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 1533
http://linked.open...ai/riv/idVysledku
  • RIV/61389030:_____/14:00433902
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Transcription; Brassinosteroid; Arabidopsis (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [7E74623AFB3D]
http://linked.open...i/riv/nazevZdroje
  • Plant Physiology
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 166
http://linked.open...iv/tvurceVysledku
  • Strnad, Miroslav
  • Tarkowská, Danuše
  • Fridman, Y.
  • Friedlander-Shani, L.
  • Savaldi-Goldstein, S.
  • Singh, A. P.
http://linked.open...ain/vavai/riv/wos
  • 000345071500020
issn
  • 0032-0889
number of pages
http://bibframe.org/vocab/doi
  • 10.1104/pp.114.245019
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 41 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software