About: Self-assembly thermodynamics of pH-responsive amino-acid-based polymers with a nonionic surfactant     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The behavior of pH-responsive polymers poly(N-methacryloyl-l-valine) (P1), poly(N-methacryloyl-l-phenylalanine) (P2), and poly(N-methacryloylglycyne-l-leucine) (P3) has been studied in the presence of the nonionic surfactant Brij98. The pure polymers phase-separate in an acidic medium with critical pHtr values of 3.7, 5.5, and 3.4, respectively. The addition of the surfactant prevents phase separation and promotes reorganization of polymer molecules. The nature of the interaction between polymer and surfactant depends on the amino acid structure in the side chain of the polymer. This effect was investigated by dynamic light scattering, isothermal titration calorimetry, electrophoretic measurements, small-angle neutron scattering, and infrared spectroscopy. Thermodynamic analysis revealed an endothermic association reaction in P1/Brij98 mixture, whereas a strong exothermic effect was observed for P2/Brij98 and P3/Brij98. Application of regular solution theory for the analysis of experimental enthalpograms indicated dominant hydrophobic interactions between P1 and Brij98 and specific interactions for the P2/Brij98 system. Electrophoretic and dynamic light scattering measurements support the applicability of the theory to these cases. The specific interactions can be ascribed to hydrogen bonds formed between the carboxylic groups of the polymer and the oligo(ethylene oxide) head groups of the surfactant. Thus, differences in polymer–surfactant interactions between P1 and P2 polymers result in different structures of polymer–surfactant complexes. Specifically, small-angle neutron scattering revealed pearl-necklace complexes and “core–shell structures for P1/Brij98 and P2/Brij98 systems, respectively. These results may help in the design of new pH-responsive site-specific micellar drug delivery systems or pH-responsive membrane-disrupting agents.
  • The behavior of pH-responsive polymers poly(N-methacryloyl-l-valine) (P1), poly(N-methacryloyl-l-phenylalanine) (P2), and poly(N-methacryloylglycyne-l-leucine) (P3) has been studied in the presence of the nonionic surfactant Brij98. The pure polymers phase-separate in an acidic medium with critical pHtr values of 3.7, 5.5, and 3.4, respectively. The addition of the surfactant prevents phase separation and promotes reorganization of polymer molecules. The nature of the interaction between polymer and surfactant depends on the amino acid structure in the side chain of the polymer. This effect was investigated by dynamic light scattering, isothermal titration calorimetry, electrophoretic measurements, small-angle neutron scattering, and infrared spectroscopy. Thermodynamic analysis revealed an endothermic association reaction in P1/Brij98 mixture, whereas a strong exothermic effect was observed for P2/Brij98 and P3/Brij98. Application of regular solution theory for the analysis of experimental enthalpograms indicated dominant hydrophobic interactions between P1 and Brij98 and specific interactions for the P2/Brij98 system. Electrophoretic and dynamic light scattering measurements support the applicability of the theory to these cases. The specific interactions can be ascribed to hydrogen bonds formed between the carboxylic groups of the polymer and the oligo(ethylene oxide) head groups of the surfactant. Thus, differences in polymer–surfactant interactions between P1 and P2 polymers result in different structures of polymer–surfactant complexes. Specifically, small-angle neutron scattering revealed pearl-necklace complexes and “core–shell structures for P1/Brij98 and P2/Brij98 systems, respectively. These results may help in the design of new pH-responsive site-specific micellar drug delivery systems or pH-responsive membrane-disrupting agents. (en)
Title
  • Self-assembly thermodynamics of pH-responsive amino-acid-based polymers with a nonionic surfactant
  • Self-assembly thermodynamics of pH-responsive amino-acid-based polymers with a nonionic surfactant (en)
skos:prefLabel
  • Self-assembly thermodynamics of pH-responsive amino-acid-based polymers with a nonionic surfactant
  • Self-assembly thermodynamics of pH-responsive amino-acid-based polymers with a nonionic surfactant (en)
skos:notation
  • RIV/61389013:_____/14:00432165!RIV15-AV0-61389013
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(LH14292)
http://linked.open...iv/cisloPeriodika
  • 38
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 44321
http://linked.open...ai/riv/idVysledku
  • RIV/61389013:_____/14:00432165
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • polymer; surfactant; thermodynamics (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [49BEDCD673E6]
http://linked.open...i/riv/nazevZdroje
  • Langmuir
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 30
http://linked.open...iv/tvurceVysledku
  • Filippov, Sergey
  • Hrubý, Martin
  • Štěpánek, Petr
  • Šturcová, Adriana
  • Bogomolova, Anna
  • Sedlák, M.
  • Keller, S.
  • Klingler, J.
  • Rak, D.
http://linked.open...ain/vavai/riv/wos
  • 000342607000008
issn
  • 0743-7463
number of pages
http://bibframe.org/vocab/doi
  • 10.1021/la5031262
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software