About: Earliest stage of the tetrahedral nanochannel formation in cubosome particles from unilamellar nanovesicles     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Studies of nonequilibrium lipid polymorphism at the nanoscale contribute to the in-depth understanding of the structural pathways for formation of aqueous channels and emerging of channels-network ordering in liquid-crystalline (LC) nanovehicles. We present experimental structural evidence for the smallest tetrahedral-type lipid membrane aggregate, which involves completely formed nanochannels and occurs as an early intermediate state during the bilayer vesicle-to-cubosome particle transition. Nanovehicles are generated from a self-assembled lipid mixture and studied by means of high-resolution cryogenic transmission electron microscopy (cryo-TEM) and synchrotron radiation small-angle X-ray scattering (SAXS). The investigated lipid membrane composition allows for the stabilization of long-lived intermediates throughout the unilamellar vesicle-to-cubosome nanoparticle (NP) transformation at ambient temperature. The observed small cubosomic particles, with well-defined water channels, appear to be precursors of larger cubic membrane structures, thus confirming the theoretical modeling of nanochannel-network growth in diamond-type cubic lipid particles. The reported structural findings, highlighting that bilayer vesicle membrane packing and fusion are required for nanochanneled cubosome particle formation, are anticipated to advance the engineering of small lipid NPs with controllable channels for biomolecular loading and release.
  • Studies of nonequilibrium lipid polymorphism at the nanoscale contribute to the in-depth understanding of the structural pathways for formation of aqueous channels and emerging of channels-network ordering in liquid-crystalline (LC) nanovehicles. We present experimental structural evidence for the smallest tetrahedral-type lipid membrane aggregate, which involves completely formed nanochannels and occurs as an early intermediate state during the bilayer vesicle-to-cubosome particle transition. Nanovehicles are generated from a self-assembled lipid mixture and studied by means of high-resolution cryogenic transmission electron microscopy (cryo-TEM) and synchrotron radiation small-angle X-ray scattering (SAXS). The investigated lipid membrane composition allows for the stabilization of long-lived intermediates throughout the unilamellar vesicle-to-cubosome nanoparticle (NP) transformation at ambient temperature. The observed small cubosomic particles, with well-defined water channels, appear to be precursors of larger cubic membrane structures, thus confirming the theoretical modeling of nanochannel-network growth in diamond-type cubic lipid particles. The reported structural findings, highlighting that bilayer vesicle membrane packing and fusion are required for nanochanneled cubosome particle formation, are anticipated to advance the engineering of small lipid NPs with controllable channels for biomolecular loading and release. (en)
Title
  • Earliest stage of the tetrahedral nanochannel formation in cubosome particles from unilamellar nanovesicles
  • Earliest stage of the tetrahedral nanochannel formation in cubosome particles from unilamellar nanovesicles (en)
skos:prefLabel
  • Earliest stage of the tetrahedral nanochannel formation in cubosome particles from unilamellar nanovesicles
  • Earliest stage of the tetrahedral nanochannel formation in cubosome particles from unilamellar nanovesicles (en)
skos:notation
  • RIV/61389013:_____/12:00384663!RIV13-AV0-61389013
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GAP208/10/1600), Z(AV0Z40500505)
http://linked.open...iv/cisloPeriodika
  • 48
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 132622
http://linked.open...ai/riv/idVysledku
  • RIV/61389013:_____/12:00384663
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • cryoTEM electron microscopy; SAXS; soft matter (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [D5D61FA875BC]
http://linked.open...i/riv/nazevZdroje
  • Langmuir
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 28
http://linked.open...iv/tvurceVysledku
  • Štěpánek, Petr
  • Garamus, V. M.
  • Angelov, Borislav
  • Angelova, A.
  • Lesieur, S.
  • Mutafchieva, R.
  • Drechsler, M.
  • Willumeit, R.
http://linked.open...ain/vavai/riv/wos
  • 000311872900019
http://linked.open...n/vavai/riv/zamer
issn
  • 0743-7463
number of pages
http://bibframe.org/vocab/doi
  • 10.1021/la302721n
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software