About: On Spectral Polynomials of the Heun Equation. II     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The well-known Heun equation has the form {Q(z)d(2)/dz(2) + P(z)d/dz + V(z)} S(z) = 0, where Q(z) is a cubic complex polynomial, P(z) and V(z) are polynomials of degree at most 2 and 1 respectively. One of the classical problems about the Heun equation suggested by E. Heine and T. Stieltjes in the late 19th century is for a given positive integer n to find all possible polynomials V(z) such that the above equation has a polynomial solution S(z) of degree n. Below we prove a conjecture of the second author, see Shapiro and Tater (JAT 162: 766-781, 2010) claiming that the union of the roots of such V(z)'s for a given n tends when n. 8 to a certain compact connecting the three roots of Q(z) which is given by a condition that a certain natural abelian integral is real-valued, see Theorem 2. In particular, we prove several new results of independent interest about rational Strebel differentials.
  • The well-known Heun equation has the form {Q(z)d(2)/dz(2) + P(z)d/dz + V(z)} S(z) = 0, where Q(z) is a cubic complex polynomial, P(z) and V(z) are polynomials of degree at most 2 and 1 respectively. One of the classical problems about the Heun equation suggested by E. Heine and T. Stieltjes in the late 19th century is for a given positive integer n to find all possible polynomials V(z) such that the above equation has a polynomial solution S(z) of degree n. Below we prove a conjecture of the second author, see Shapiro and Tater (JAT 162: 766-781, 2010) claiming that the union of the roots of such V(z)'s for a given n tends when n. 8 to a certain compact connecting the three roots of Q(z) which is given by a condition that a certain natural abelian integral is real-valued, see Theorem 2. In particular, we prove several new results of independent interest about rational Strebel differentials. (en)
Title
  • On Spectral Polynomials of the Heun Equation. II
  • On Spectral Polynomials of the Heun Equation. II (en)
skos:prefLabel
  • On Spectral Polynomials of the Heun Equation. II
  • On Spectral Polynomials of the Heun Equation. II (en)
skos:notation
  • RIV/61389005:_____/12:00384816!RIV13-AV0-61389005
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(LC06002)
http://linked.open...iv/cisloPeriodika
  • 2
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 156338
http://linked.open...ai/riv/idVysledku
  • RIV/61389005:_____/12:00384816
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Heun equation; Van Vleck and Stieltjes polynomials; generalized canonical commutation relations; quadratic differential (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • DE - Spolková republika Německo
http://linked.open...ontrolniKodProRIV
  • [34DA52AE9FCC]
http://linked.open...i/riv/nazevZdroje
  • Communications in Mathematical Physics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 311
http://linked.open...iv/tvurceVysledku
  • Tater, Miloš
  • Shapiro, B.
  • Takemura, K.
http://linked.open...ain/vavai/riv/wos
  • 000302243700001
issn
  • 0010-3616
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/s00220-012-1466-3
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 64 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software