Attributes | Values |
---|
rdf:type
| |
Description
| - The Dirichlet Laplacian in curved tubes of arbitrary constant cross-section rotating together with the Tang frame along a bounded curve in Euclidean spaces of arbitrary dimension is investigated in the limit when the volume of the cross-section diminishes. We show that spectral properties of the Laplacian are, in this limit, approximated well by those of the sum of the Dirichlet Laplacian in the cross-section and a one-dimensional Schrodinger operator whose potential is expressed solely in terms of the first curvature of the reference curve. In particular, we establish the convergence of eigenvalues, the uniform convergence of eigenfunctions and locate the nodal set of the Dirichlet Laplacian in the tube near nodal points of the one-dimensional Schrodinger operator. As a consequence, we prove the %22nodal-line conjecture%22 for a class of non-convex and possibly multiply connected domains.
- The Dirichlet Laplacian in curved tubes of arbitrary constant cross-section rotating together with the Tang frame along a bounded curve in Euclidean spaces of arbitrary dimension is investigated in the limit when the volume of the cross-section diminishes. We show that spectral properties of the Laplacian are, in this limit, approximated well by those of the sum of the Dirichlet Laplacian in the cross-section and a one-dimensional Schrodinger operator whose potential is expressed solely in terms of the first curvature of the reference curve. In particular, we establish the convergence of eigenvalues, the uniform convergence of eigenfunctions and locate the nodal set of the Dirichlet Laplacian in the tube near nodal points of the one-dimensional Schrodinger operator. As a consequence, we prove the %22nodal-line conjecture%22 for a class of non-convex and possibly multiply connected domains. (en)
- Zabyvame se dirichletovskym laplacianem v krivych trubicich v limite scvrkavajiciho se prurezu. Ukazujeme, ze spektralni vlastnosti laplacianu lze v teto limite aproximovat jednodimensionalnim schroedingerovskym operatorem, jehoz potencial zavisi na krivosti referencni krivky trubice. Jako aplikaci dokazujeme Payneovu %22hypotesu o nodalnich carach%22 pro takovouto tridu nekonvexnich a pripadne i vicesouvislych oblasti. (cs)
|
Title
| - Location of the nodal set for thin curved tubes
- Location of the nodal set for thin curved tubes (en)
- Lokalisace nodalni mnoziny pro tenke krive trubice (cs)
|
skos:prefLabel
| - Location of the nodal set for thin curved tubes
- Location of the nodal set for thin curved tubes (en)
- Lokalisace nodalni mnoziny pro tenke krive trubice (cs)
|
skos:notation
| - RIV/61389005:_____/08:00311171!RIV09-AV0-61389005
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(LC06002), Z(AV0Z10480505)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/61389005:_____/08:00311171
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Dirichlet Laplacian; nodal set; tubes (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - US - Spojené státy americké
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - Indiana University Mathematics Journal
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Krejčiřík, David
- Freitas, P.
|
http://linked.open...ain/vavai/riv/wos
| |
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |
is http://linked.open...avai/riv/vysledek
of | |