About: Location of the nodal set for thin curved tubes     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The Dirichlet Laplacian in curved tubes of arbitrary constant cross-section rotating together with the Tang frame along a bounded curve in Euclidean spaces of arbitrary dimension is investigated in the limit when the volume of the cross-section diminishes. We show that spectral properties of the Laplacian are, in this limit, approximated well by those of the sum of the Dirichlet Laplacian in the cross-section and a one-dimensional Schrodinger operator whose potential is expressed solely in terms of the first curvature of the reference curve. In particular, we establish the convergence of eigenvalues, the uniform convergence of eigenfunctions and locate the nodal set of the Dirichlet Laplacian in the tube near nodal points of the one-dimensional Schrodinger operator. As a consequence, we prove the %22nodal-line conjecture%22 for a class of non-convex and possibly multiply connected domains.
  • The Dirichlet Laplacian in curved tubes of arbitrary constant cross-section rotating together with the Tang frame along a bounded curve in Euclidean spaces of arbitrary dimension is investigated in the limit when the volume of the cross-section diminishes. We show that spectral properties of the Laplacian are, in this limit, approximated well by those of the sum of the Dirichlet Laplacian in the cross-section and a one-dimensional Schrodinger operator whose potential is expressed solely in terms of the first curvature of the reference curve. In particular, we establish the convergence of eigenvalues, the uniform convergence of eigenfunctions and locate the nodal set of the Dirichlet Laplacian in the tube near nodal points of the one-dimensional Schrodinger operator. As a consequence, we prove the %22nodal-line conjecture%22 for a class of non-convex and possibly multiply connected domains. (en)
  • Zabyvame se dirichletovskym laplacianem v krivych trubicich v limite scvrkavajiciho se prurezu. Ukazujeme, ze spektralni vlastnosti laplacianu lze v teto limite aproximovat jednodimensionalnim schroedingerovskym operatorem, jehoz potencial zavisi na krivosti referencni krivky trubice. Jako aplikaci dokazujeme Payneovu %22hypotesu o nodalnich carach%22 pro takovouto tridu nekonvexnich a pripadne i vicesouvislych oblasti. (cs)
Title
  • Location of the nodal set for thin curved tubes
  • Location of the nodal set for thin curved tubes (en)
  • Lokalisace nodalni mnoziny pro tenke krive trubice (cs)
skos:prefLabel
  • Location of the nodal set for thin curved tubes
  • Location of the nodal set for thin curved tubes (en)
  • Lokalisace nodalni mnoziny pro tenke krive trubice (cs)
skos:notation
  • RIV/61389005:_____/08:00311171!RIV09-AV0-61389005
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(LC06002), Z(AV0Z10480505)
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 377040
http://linked.open...ai/riv/idVysledku
  • RIV/61389005:_____/08:00311171
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Dirichlet Laplacian; nodal set; tubes (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [006CB03D4D74]
http://linked.open...i/riv/nazevZdroje
  • Indiana University Mathematics Journal
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 57
http://linked.open...iv/tvurceVysledku
  • Krejčiřík, David
  • Freitas, P.
http://linked.open...ain/vavai/riv/wos
  • 000254468900010
http://linked.open...n/vavai/riv/zamer
issn
  • 0022-2518
number of pages
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 77 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software