About: Solution properties of metal ion complexes formed with the antiviral and cytostatic nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (PME2A6DMAP)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The acidity constants of protonated 9-[2-(phosphonomethoxy) ethyl]-2-amino-6-dimethylaminopurine (H-3(PME2A6DMAP)(+)) are considered, and the stability constants of the M(H;PME2A6DMAP)(+) and M(PME2A6DMAP) complexes (M2+ = Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+) were measured by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 mol/L, NaNO3). In the M(H;PME2A6DMAP)(+) species, H+ and M2+ (mainly outersphere) are at the phosphonate group; this is relevant for phosphoryl-diester bridges in nucleic acids because, in the present system, there is no indication for a M2+-purine binding. This contrasts, for example, with the complexes formed by 9-[2-(phosphonomethoxy) ethyl] adenine, M(H;PMEA)(+), where M2+ is mainly situated at the adenine residue. Application of log K-M(R-PO3)(M) vs center dot pK(H(R-PO3))(H) plots for simple phosph(on) ate ligands, R-PO32- (R being a residue that does not affect M2+ binding), proves that all M(PME2A6DMAP) complexes have larger stabilities than what would be expected for a M2+-phosphonate coordination. Comparisons with M(PME-R) complexes, where R is a noncoordinating residue of the (phosphonomethoxy) ethane chain, allow one to conclude that the increased stability is due to the formation of five-membered chelates involving the ether-oxygen of the -CH2-O-CH2-PO32- residue: the percentages of formation of these M(PME2A6DMAP)(cl/O) chelates, which occur in intramolecular equilibria, vary between 20% (Sr2+, Ba2+) and 50% (Zn2+, Cd2+), up to a maximum of 67% (Cu2+). Any M2+ interaction with N3 or N7 of the purine moiety, as in the parent M(PMEA) complexes, is suppressed by the (C2)NH2 and (C6)N(CH3)(2) substituents. This observation, together with the previously determined stacking properties, offers an explanation why PME2A6DMAP(2-) has remarkable therapeutic effects.
  • The acidity constants of protonated 9-[2-(phosphonomethoxy) ethyl]-2-amino-6-dimethylaminopurine (H-3(PME2A6DMAP)(+)) are considered, and the stability constants of the M(H;PME2A6DMAP)(+) and M(PME2A6DMAP) complexes (M2+ = Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+) were measured by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 mol/L, NaNO3). In the M(H;PME2A6DMAP)(+) species, H+ and M2+ (mainly outersphere) are at the phosphonate group; this is relevant for phosphoryl-diester bridges in nucleic acids because, in the present system, there is no indication for a M2+-purine binding. This contrasts, for example, with the complexes formed by 9-[2-(phosphonomethoxy) ethyl] adenine, M(H;PMEA)(+), where M2+ is mainly situated at the adenine residue. Application of log K-M(R-PO3)(M) vs center dot pK(H(R-PO3))(H) plots for simple phosph(on) ate ligands, R-PO32- (R being a residue that does not affect M2+ binding), proves that all M(PME2A6DMAP) complexes have larger stabilities than what would be expected for a M2+-phosphonate coordination. Comparisons with M(PME-R) complexes, where R is a noncoordinating residue of the (phosphonomethoxy) ethane chain, allow one to conclude that the increased stability is due to the formation of five-membered chelates involving the ether-oxygen of the -CH2-O-CH2-PO32- residue: the percentages of formation of these M(PME2A6DMAP)(cl/O) chelates, which occur in intramolecular equilibria, vary between 20% (Sr2+, Ba2+) and 50% (Zn2+, Cd2+), up to a maximum of 67% (Cu2+). Any M2+ interaction with N3 or N7 of the purine moiety, as in the parent M(PMEA) complexes, is suppressed by the (C2)NH2 and (C6)N(CH3)(2) substituents. This observation, together with the previously determined stacking properties, offers an explanation why PME2A6DMAP(2-) has remarkable therapeutic effects. (en)
Title
  • Solution properties of metal ion complexes formed with the antiviral and cytostatic nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (PME2A6DMAP)
  • Solution properties of metal ion complexes formed with the antiviral and cytostatic nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (PME2A6DMAP) (en)
skos:prefLabel
  • Solution properties of metal ion complexes formed with the antiviral and cytostatic nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (PME2A6DMAP)
  • Solution properties of metal ion complexes formed with the antiviral and cytostatic nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (PME2A6DMAP) (en)
skos:notation
  • RIV/61388963:_____/14:00435258!RIV15-AV0-61388963
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I
http://linked.open...iv/cisloPeriodika
  • 8
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 45920
http://linked.open...ai/riv/idVysledku
  • RIV/61388963:_____/14:00435258
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • acyclic nucleoside phosphonates; antivirals; intramolecular equilibria; metal-ion complexes; nucleotide analogues; stability constants (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • CA - Kanada
http://linked.open...ontrolniKodProRIV
  • [E193E2D1873F]
http://linked.open...i/riv/nazevZdroje
  • Canadian Journal of Chemistry
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 92
http://linked.open...iv/tvurceVysledku
  • Holý, Antonín
  • Gómez-Coca, R. B.
  • Operschall, B. P.
  • Sigel, A.
  • Sigel, H.
http://linked.open...ain/vavai/riv/wos
  • 000343117300013
issn
  • 0008-4042
number of pages
http://bibframe.org/vocab/doi
  • 10.1139/cjc-2014-0041
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software