About: Tracking all-vapor instant gas-hydrate formation and guest molecule populations: A possible probe for molecules trapped in water nanodroplets     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Quantitative Fourier-transform infrared spectra for low-temperature (160–200 K) aerosols of clathrate-hydrate nanoparticles that contain large-cage catalysts and small-cage nonpolar guests have been extended to a broad range of vapor compositions and sampling conditions. The data better reveal the stages by which room-temperature vapor mixtures, when cooled below 220 K, instantly generate aerosols with particles composed exclusively of the corresponding clathrate hydrates. In particular the quantitative data help relate the nature of the hydrates that form to the composition of the aqueous nanodroplets of the first stages of the rapid transition from the all-vapor mixture. The overall transition from an all-vapor mixture to “gas-hydrate nanocrystals is a multistage one that has been characterized as homogeneous nucleation and growth of solution nanodroplets (240 K) followed by nucleation and growth of the gas-hydrate particles (220 K); all occurring within a subsecond that follows pulsing of the warm vapor into a sampling cold chamber. This may serve well as a general description of the instantaneous generation of the gas-hydrate aerosols, but closer consideration of the nature of the sampling method, in context with recent computation-based insights to (a) gas-hydrate nucleation stages/rates and (b) the lifetimes of trapped small nonpolar molecules in cold aqueous nanodroplets, suggests a more complex multistage transition. The simulated lifetimes and extensive new quantitative infrared data significantly broaden the knowledge base in which the instantaneous transition from vapor to crystalline hydrate particles is viewed. The apparent need for a high occupancy of large-cage catalytic guest molecules currently limits the practical value of the all-vapor method. Only through greater clarity in the molecular-level description of the transition will the ultimate limits be defined.
  • Quantitative Fourier-transform infrared spectra for low-temperature (160–200 K) aerosols of clathrate-hydrate nanoparticles that contain large-cage catalysts and small-cage nonpolar guests have been extended to a broad range of vapor compositions and sampling conditions. The data better reveal the stages by which room-temperature vapor mixtures, when cooled below 220 K, instantly generate aerosols with particles composed exclusively of the corresponding clathrate hydrates. In particular the quantitative data help relate the nature of the hydrates that form to the composition of the aqueous nanodroplets of the first stages of the rapid transition from the all-vapor mixture. The overall transition from an all-vapor mixture to “gas-hydrate nanocrystals is a multistage one that has been characterized as homogeneous nucleation and growth of solution nanodroplets (240 K) followed by nucleation and growth of the gas-hydrate particles (220 K); all occurring within a subsecond that follows pulsing of the warm vapor into a sampling cold chamber. This may serve well as a general description of the instantaneous generation of the gas-hydrate aerosols, but closer consideration of the nature of the sampling method, in context with recent computation-based insights to (a) gas-hydrate nucleation stages/rates and (b) the lifetimes of trapped small nonpolar molecules in cold aqueous nanodroplets, suggests a more complex multistage transition. The simulated lifetimes and extensive new quantitative infrared data significantly broaden the knowledge base in which the instantaneous transition from vapor to crystalline hydrate particles is viewed. The apparent need for a high occupancy of large-cage catalytic guest molecules currently limits the practical value of the all-vapor method. Only through greater clarity in the molecular-level description of the transition will the ultimate limits be defined. (en)
Title
  • Tracking all-vapor instant gas-hydrate formation and guest molecule populations: A possible probe for molecules trapped in water nanodroplets
  • Tracking all-vapor instant gas-hydrate formation and guest molecule populations: A possible probe for molecules trapped in water nanodroplets (en)
skos:prefLabel
  • Tracking all-vapor instant gas-hydrate formation and guest molecule populations: A possible probe for molecules trapped in water nanodroplets
  • Tracking all-vapor instant gas-hydrate formation and guest molecule populations: A possible probe for molecules trapped in water nanodroplets (en)
skos:notation
  • RIV/61388955:_____/12:00384412!RIV13-AV0-61388955
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I
http://linked.open...iv/cisloPeriodika
  • 20
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
  • Cwiklik, Lukasz
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 174777
http://linked.open...ai/riv/idVysledku
  • RIV/61388955:_____/12:00384412
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Fourier transform infrared emission spectra; clathrate hydrate; simulations (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [2FAA80F2D14F]
http://linked.open...i/riv/nazevZdroje
  • Journal of Chemical Physics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 137
http://linked.open...iv/tvurceVysledku
  • Cwiklik, Lukasz
  • Devlin, J. P.
  • Uras-Aytemiz, N.
http://linked.open...ain/vavai/riv/wos
  • 000312252100042
issn
  • 0021-9606
number of pages
http://bibframe.org/vocab/doi
  • 10.1063/1.4767370
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software