About: A fast algorithm for mass transfer on an unstructured grid formed by DEM particles     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The Discrete Element Method (DEM) was used to generate a particle packing and transient mass transfer in the particle layer was simulated using a novel algorithm for determining the mass fluxes between DEM particles. This method is intended for simulating diffusion phenomena occurring during the dissolution of swelling polymers as the DEM particles can change size and distort the grid, whilst maintaining sharp boundaries between mesh elements. In this work, the robustness and accuracy of the algorithm was tested by solving a diffusion problem over the DEM mesh and comparing it to an accurate solution obtained by a finite difference (FD) approximation, whose discretisation was 10 times finer than that of the unstructured grid. Parametric studies were conducted where the random packing and the size distribution of the DEM particles were altered and the differences in concentration profiles were compared with the FD reference solution through the use of the mean squared error. Both steady state and transient cases were compared. Two methods to improve the accuracy of the DEM unstructured grid were devised and tested using porosity and tortuosity data. In one case the porosity and tortuosity were obtained from the steady-state simulations and in the other case, local convex hulls were used to calculate porosity. Although both these methods decreased the mean squared error up to a factor of two, they also resulted into increased complexity of the simulation. It was concluded that the use of an effective packing algorithm and a narrow particle size distribution are key to maintaining the accuracy of the DEM-generated unstructured grid method.
  • The Discrete Element Method (DEM) was used to generate a particle packing and transient mass transfer in the particle layer was simulated using a novel algorithm for determining the mass fluxes between DEM particles. This method is intended for simulating diffusion phenomena occurring during the dissolution of swelling polymers as the DEM particles can change size and distort the grid, whilst maintaining sharp boundaries between mesh elements. In this work, the robustness and accuracy of the algorithm was tested by solving a diffusion problem over the DEM mesh and comparing it to an accurate solution obtained by a finite difference (FD) approximation, whose discretisation was 10 times finer than that of the unstructured grid. Parametric studies were conducted where the random packing and the size distribution of the DEM particles were altered and the differences in concentration profiles were compared with the FD reference solution through the use of the mean squared error. Both steady state and transient cases were compared. Two methods to improve the accuracy of the DEM unstructured grid were devised and tested using porosity and tortuosity data. In one case the porosity and tortuosity were obtained from the steady-state simulations and in the other case, local convex hulls were used to calculate porosity. Although both these methods decreased the mean squared error up to a factor of two, they also resulted into increased complexity of the simulation. It was concluded that the use of an effective packing algorithm and a narrow particle size distribution are key to maintaining the accuracy of the DEM-generated unstructured grid method. (en)
Title
  • A fast algorithm for mass transfer on an unstructured grid formed by DEM particles
  • A fast algorithm for mass transfer on an unstructured grid formed by DEM particles (en)
skos:prefLabel
  • A fast algorithm for mass transfer on an unstructured grid formed by DEM particles
  • A fast algorithm for mass transfer on an unstructured grid formed by DEM particles (en)
skos:notation
  • RIV/60461373:22340/11:43892162!RIV12-MSM-22340___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • R
http://linked.open...iv/cisloPeriodika
  • 3
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 183781
http://linked.open...ai/riv/idVysledku
  • RIV/60461373:22340/11:43892162
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Algorithm; Mathematical modelling; Diffusion; Discrete Element Method; Mass transfer (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • CH - Švýcarská konfederace
http://linked.open...ontrolniKodProRIV
  • [9E144FC0F484]
http://linked.open...i/riv/nazevZdroje
  • Powder Technology
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 214
http://linked.open...iv/tvurceVysledku
  • Kazarian, Sergei G.
  • Kimber, James A.
  • Štěpánek, František
http://linked.open...ain/vavai/riv/wos
  • 000297440500018
issn
  • 0032-5910
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.powtec.2011.08.040
http://localhost/t...ganizacniJednotka
  • 22340
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 41 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software