About: Edge Detection in Biomedical Images     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Obrazové hrany v sobě nesou nejdůležitější část vnímané informace obsažené v obrazu. Zvýraznění hran tak výrazně přispívá ke zkvalitnění obrazu či detekci hranic objektů. Pojmem hrana rozumíme rychlou změnu v intenzitě pixelů. Hrany se skokovým profilem jsou snadno detekovatelné krátkými gradientními maskami. U rozmazaných a zašuměných obrázků je výhodnější použít např. Cannyho hranový detektor. V tomto příspěvku se zabýváme detekcí hran pomocí obou těchto technik v biomedicínských obrazech, které jsou nejprve zbaveny šumu metodou prahování wavelet koeficientů. Pro tento účel používáme diskrétní wavelet transformaci (DWT) a komplexní wavelet transformaci metodou duálního stromu (DTCWT) navrženou N. Kingsburym. DTCWT překonává DWT přibližnou invariancí k posunu a lepším prostorovým rozlišením. (cs)
  • Image edges convey the most important part of the percepted information in an image. Edge detection contributes extensively to visual enhancement and objects boundaries detection. The term edge denotes an abrupt change in the image intensity. Sharp edges of a step-function profile may by easily detected by short gradient masks. In blurred and noisy images, multi-scale methods, such as the Canny detector, prove more convenient. In this paper, all the above edge detection techniques are applied to biomedical images prepocessed by wavelet coefficients shrinkage for noise reduction. For this purpose, we use either the Discrete Wavelet Transform (DWT) or the Dual-Tree Complex Wavelet Transform (DTCWT) designed by N. Kingsbury. The latter outperforms the DWT by its approximate shift invariance and better directional selectivity. Furthermore, owing to their sparsity and persistence, the DTCWT coefficients may be modelled by Hidden Markov models and utilized for edge detection.
  • Image edges convey the most important part of the percepted information in an image. Edge detection contributes extensively to visual enhancement and objects boundaries detection. The term edge denotes an abrupt change in the image intensity. Sharp edges of a step-function profile may by easily detected by short gradient masks. In blurred and noisy images, multi-scale methods, such as the Canny detector, prove more convenient. In this paper, all the above edge detection techniques are applied to biomedical images prepocessed by wavelet coefficients shrinkage for noise reduction. For this purpose, we use either the Discrete Wavelet Transform (DWT) or the Dual-Tree Complex Wavelet Transform (DTCWT) designed by N. Kingsbury. The latter outperforms the DWT by its approximate shift invariance and better directional selectivity. Furthermore, owing to their sparsity and persistence, the DTCWT coefficients may be modelled by Hidden Markov models and utilized for edge detection. (en)
Title
  • Edge Detection in Biomedical Images
  • Detekce hran v biomedicínských obrazech (cs)
  • Edge Detection in Biomedical Images (en)
skos:prefLabel
  • Edge Detection in Biomedical Images
  • Detekce hran v biomedicínských obrazech (cs)
  • Edge Detection in Biomedical Images (en)
skos:notation
  • RIV/60461373:22340/08:00020857!RIV09-MSM-22340___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • Z(MSM6046137306)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 364872
http://linked.open...ai/riv/idVysledku
  • RIV/60461373:22340/08:00020857
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • edge detection; wavelet transform; wavelet shrinkage; gradient masks; Canny detector; dual-tree complex wavelet transform; hidden Markov models (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [F04B08066184]
http://linked.open...v/mistoKonaniAkce
  • Kouty nad Desnou
http://linked.open...i/riv/mistoVydani
  • Pardubice
http://linked.open...i/riv/nazevZdroje
  • Proceedings the 8th International Scientific - Technological Conference Process Control 2008
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Procházka, Aleš
  • Hošťálková, Eva
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Univerzita Pardubice
https://schema.org/isbn
  • 978-80-7395-077-4
http://localhost/t...ganizacniJednotka
  • 22340
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software