About: Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Beyond MoS2 as the first transition metal dichalcogenide (TMD) to have gained recognition as an efficient catalyst for the hydrogen evolution reaction (HER), interest in other TMD nanomaterials is steadily beginning to proliferate. This is particularly true in the field of electrochemistry, with a myriad of emerging applications ranging from catalysis to supercapacitors and solar cells. Despite this rise, current understanding of their electrochemical characteristics is especially lacking. We therefore examine the inherent electroactivities of various chemically exfoliated TMDs (MoSe2, WS2, WSe2) and their implications for sensing and catalysis of the hydrogen evolution and oxygen reduction reactions (ORR). The TMDs studied are found to possess distinctive inherent electroactivities and together with their catalytic effects for the HER are revealed to strongly depend on the chemical exfoliation route and metal-to-chalcogen composition particularly in MoSe2. Despite its inherent activity exhibiting large variations depending on the exfoliation procedure, it is also the most efficient HER catalyst with a low overpotential of ?0.36 V vs RHE (at 10 mA cm-2 current density) and fairly low Tafel slope of ?65 mV/dec after BuLi exfoliation. In addition, it demonstrates a fast heterogeneous electron transfer rate with a k0obs of 9.17 x 10-4 cm s-1 toward ferrocyanide, better than that seen for conventional glassy carbon electrodes. Knowledge of TMD electrochemistry is essential for the rational development of future applications; inherent TMD activity may potentially limit certain purposes, but intended objectives can nonetheless be achieved by careful selection of TMD compositions and exfoliation methods.
  • Beyond MoS2 as the first transition metal dichalcogenide (TMD) to have gained recognition as an efficient catalyst for the hydrogen evolution reaction (HER), interest in other TMD nanomaterials is steadily beginning to proliferate. This is particularly true in the field of electrochemistry, with a myriad of emerging applications ranging from catalysis to supercapacitors and solar cells. Despite this rise, current understanding of their electrochemical characteristics is especially lacking. We therefore examine the inherent electroactivities of various chemically exfoliated TMDs (MoSe2, WS2, WSe2) and their implications for sensing and catalysis of the hydrogen evolution and oxygen reduction reactions (ORR). The TMDs studied are found to possess distinctive inherent electroactivities and together with their catalytic effects for the HER are revealed to strongly depend on the chemical exfoliation route and metal-to-chalcogen composition particularly in MoSe2. Despite its inherent activity exhibiting large variations depending on the exfoliation procedure, it is also the most efficient HER catalyst with a low overpotential of ?0.36 V vs RHE (at 10 mA cm-2 current density) and fairly low Tafel slope of ?65 mV/dec after BuLi exfoliation. In addition, it demonstrates a fast heterogeneous electron transfer rate with a k0obs of 9.17 x 10-4 cm s-1 toward ferrocyanide, better than that seen for conventional glassy carbon electrodes. Knowledge of TMD electrochemistry is essential for the rational development of future applications; inherent TMD activity may potentially limit certain purposes, but intended objectives can nonetheless be achieved by careful selection of TMD compositions and exfoliation methods. (en)
Title
  • Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method
  • Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method (en)
skos:prefLabel
  • Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method
  • Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method (en)
skos:notation
  • RIV/60461373:22310/14:43897458!RIV15-MSM-22310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...iv/cisloPeriodika
  • 12
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 14129
http://linked.open...ai/riv/idVysledku
  • RIV/60461373:22310/14:43897458
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • electrochemistry; chemical exfoliation; two-dimensional materials; dichalcogenides; transition metal chalcogenides (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [895E02115F2E]
http://linked.open...i/riv/nazevZdroje
  • ACS Nano
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 8
http://linked.open...iv/tvurceVysledku
  • Pumera, Martin
  • Sofer, Zdeněk
  • Šimek, Petr
  • Ambrosi, Adriano
  • Eng, Alex Yong Sheng
issn
  • 1936-0851
number of pages
http://bibframe.org/vocab/doi
  • 10.1021/nn503832j
http://localhost/t...ganizacniJednotka
  • 22310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 41 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software