About: Glass and Silicon Foils for X-ray Space Telescope Mirrors     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Unique observations delivered by space X-ray imaging telescopes have been significantly contributing to important discoveries of current astrophysics. The telescopes' most crucial part is a high throughput, heavily nested mirror array reflecting X-rays and focusing them to a detector. Future astronomical projects on large X-ray telescopes require novel materials and technologies for the construction of the reflecting mirrors. The future mirrors must be lightweight and precisely shaped to achieve large collecting area with high angular resolution of a few arc sec. The new materials and technologies must be cost-effective as well. Currently, the most promising materials are glass or silicon foils which are commercially produced on a large scale. A thermal forming process was used for the precise shaping of these foils. The forced and free slumping of the foils was studied in the temperature range of hot plastic deformation and the shapes obtained by the different slumping processes were compared. The shapes and the surface quality of the foils were measured by a Taylor Hobson contact profilemeter, a ZYGO interferometer and Atomic Forced Microscopy. In the experiments, both heat-treatment temperature and time were varied following our experiment design. The obtained data and relations can be used for modelling and optimizing the thermal forming procedure.
  • Unique observations delivered by space X-ray imaging telescopes have been significantly contributing to important discoveries of current astrophysics. The telescopes' most crucial part is a high throughput, heavily nested mirror array reflecting X-rays and focusing them to a detector. Future astronomical projects on large X-ray telescopes require novel materials and technologies for the construction of the reflecting mirrors. The future mirrors must be lightweight and precisely shaped to achieve large collecting area with high angular resolution of a few arc sec. The new materials and technologies must be cost-effective as well. Currently, the most promising materials are glass or silicon foils which are commercially produced on a large scale. A thermal forming process was used for the precise shaping of these foils. The forced and free slumping of the foils was studied in the temperature range of hot plastic deformation and the shapes obtained by the different slumping processes were compared. The shapes and the surface quality of the foils were measured by a Taylor Hobson contact profilemeter, a ZYGO interferometer and Atomic Forced Microscopy. In the experiments, both heat-treatment temperature and time were varied following our experiment design. The obtained data and relations can be used for modelling and optimizing the thermal forming procedure. (en)
Title
  • Glass and Silicon Foils for X-ray Space Telescope Mirrors
  • Glass and Silicon Foils for X-ray Space Telescope Mirrors (en)
skos:prefLabel
  • Glass and Silicon Foils for X-ray Space Telescope Mirrors
  • Glass and Silicon Foils for X-ray Space Telescope Mirrors (en)
skos:notation
  • RIV/60461373:22310/11:43893031!RIV12-MSM-22310___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(IAAX01220701), Z(MSM6046137302)
http://linked.open...iv/cisloPeriodika
  • 4
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 201304
http://linked.open...ai/riv/idVysledku
  • RIV/60461373:22310/11:43893031
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Glass, Silicon, Thermal forming, X-ray (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • CZ - Česká republika
http://linked.open...ontrolniKodProRIV
  • [8D75D6C360D9]
http://linked.open...i/riv/nazevZdroje
  • Ceramics-Silikáty
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 55
http://linked.open...iv/tvurceVysledku
  • Hudec, René
  • Míka, Martin
  • Pína, Ladislav
  • Havlíková, Radka
  • Inneman, Adolf
  • Janovský, Ondřej
  • Kačerovský, Roman
  • Landová, Martina
  • Maršíková, Veronika
  • Švéda, Libor
http://linked.open...n/vavai/riv/zamer
issn
  • 0862-5468
number of pages
http://localhost/t...ganizacniJednotka
  • 22310
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.116 as of Feb 22 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3239 as of Feb 22 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 68 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software