About: SWSNL: Semantic Web Search Using Natural Language     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • As modern search engines are approaching the ability to deal with queries expressed in natural language, full support of natural language interfaces seems to be the next step in the development of future systems. The vision is that of users being able to tell a computer what they would like to find, using any number of sentences and as many details as requested. In this article we describe our effort to move towards this future using currently available technology. The Semantic Web framework was chosen as the best means to achieve this goal. We present our approach to building a complete Semantic Web Search Using Natural Language (SWSNL) system. We cover the complete process which includes preprocessing, semantic analysis, semantic interpretation, and executing a SPARQL query to retrieve the results. We perform an end-to-end evaluation on a domain dealing with accommodation options. The domain data come from an existing accommodation portal and we use a corpus of queries obtained by a Facebook campaign. In our paper we work with written texts in the Czech language. In addition to that, the Natural Language Understanding (NLU) module is evaluated on another domain (public transportation) and language (English). We expect that our findings will be valuable for the research community as they are strongly related to issues found in real-world scenarios. We struggled with inconsistencies in the actual Web data, with the performance of the Semantic Web engines on a decently sized knowledge base, and others.
  • As modern search engines are approaching the ability to deal with queries expressed in natural language, full support of natural language interfaces seems to be the next step in the development of future systems. The vision is that of users being able to tell a computer what they would like to find, using any number of sentences and as many details as requested. In this article we describe our effort to move towards this future using currently available technology. The Semantic Web framework was chosen as the best means to achieve this goal. We present our approach to building a complete Semantic Web Search Using Natural Language (SWSNL) system. We cover the complete process which includes preprocessing, semantic analysis, semantic interpretation, and executing a SPARQL query to retrieve the results. We perform an end-to-end evaluation on a domain dealing with accommodation options. The domain data come from an existing accommodation portal and we use a corpus of queries obtained by a Facebook campaign. In our paper we work with written texts in the Czech language. In addition to that, the Natural Language Understanding (NLU) module is evaluated on another domain (public transportation) and language (English). We expect that our findings will be valuable for the research community as they are strongly related to issues found in real-world scenarios. We struggled with inconsistencies in the actual Web data, with the performance of the Semantic Web engines on a decently sized knowledge base, and others. (en)
Title
  • SWSNL: Semantic Web Search Using Natural Language
  • SWSNL: Semantic Web Search Using Natural Language (en)
skos:prefLabel
  • SWSNL: Semantic Web Search Using Natural Language
  • SWSNL: Semantic Web Search Using Natural Language (en)
skos:notation
  • RIV/49777513:23520/13:43918239!RIV14-MSM-23520___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED1.1.00/02.0090), S
http://linked.open...iv/cisloPeriodika
  • 9
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 109336
http://linked.open...ai/riv/idVysledku
  • RIV/49777513:23520/13:43918239
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Statistical semantic analysis; Semantic Web; Natural Language Understanding; Semantic search (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [480BE37A39E9]
http://linked.open...i/riv/nazevZdroje
  • Expert Systems with Applications
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 40
http://linked.open...iv/tvurceVysledku
  • Konopík, Miloslav
  • Habernal, Ivan
issn
  • 0957-4174
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.eswa.2012.12.070
http://localhost/t...ganizacniJednotka
  • 23520
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software