About: From planar to spatial Euclidean and Minkowski Pythagorean hodograph curves     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Spatial Pythagorean hodograph (PH) curves, both in Euclidean and Minkowski 3-space, were originally introduced as polynomial curves with polynomial speed measured with respect to Euclidean or Minkowski norm, respectively. Recently, Kosinka and Lávička (2010) extended the notion of MPH curves also to the rational case by prescribing an associated planar rational PH curve and an additional rational function. At the same time, Farouki and Šír (2011) presented a method for constructing rational Euclidean PH curves in 3-space based on a field of rational unit tangent vectors. In this paper, we summarise known constructions and present a unifying idea for rational PH curves in Euclidean and Minkowski 3-space.
  • Spatial Pythagorean hodograph (PH) curves, both in Euclidean and Minkowski 3-space, were originally introduced as polynomial curves with polynomial speed measured with respect to Euclidean or Minkowski norm, respectively. Recently, Kosinka and Lávička (2010) extended the notion of MPH curves also to the rational case by prescribing an associated planar rational PH curve and an additional rational function. At the same time, Farouki and Šír (2011) presented a method for constructing rational Euclidean PH curves in 3-space based on a field of rational unit tangent vectors. In this paper, we summarise known constructions and present a unifying idea for rational PH curves in Euclidean and Minkowski 3-space. (en)
Title
  • From planar to spatial Euclidean and Minkowski Pythagorean hodograph curves
  • From planar to spatial Euclidean and Minkowski Pythagorean hodograph curves (en)
skos:prefLabel
  • From planar to spatial Euclidean and Minkowski Pythagorean hodograph curves
  • From planar to spatial Euclidean and Minkowski Pythagorean hodograph curves (en)
skos:notation
  • RIV/49777513:23520/11:43899235!RIV12-MSM-23520___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • Z(MSM4977751301)
http://linked.open...iv/cisloPeriodika
  • 16
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 200440
http://linked.open...ai/riv/idVysledku
  • RIV/49777513:23520/11:43899235
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Rational space curves, Euclidean and Minkowski Pythagorean hodograph curves, offsets, trimming (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • SK - Slovenská republika
http://linked.open...ontrolniKodProRIV
  • [BD4D1DE8A71B]
http://linked.open...i/riv/nazevZdroje
  • G ? slovenský časopis pre geometriu a grafiku
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 8
http://linked.open...iv/tvurceVysledku
  • Kosinka, Jiří
  • Lávička, Miroslav
http://linked.open...n/vavai/riv/zamer
issn
  • 1336-524X
number of pages
http://localhost/t...ganizacniJednotka
  • 23520
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software