About: A Priori and A Posteriori Machine Learning and Nonlinear Artificial Neural Networks     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The main idea of a priori machine learning is to apply a machine learning method on a machine learning problem itself. We call it ``a priori'' because the processed data set does not originate from any measurement or other observation. Machine learning which deals with any observation is called ``posterior''. The paper describes how posterior machine learning can be modified by a priori machine learning. A priori and posterior machine learning algorithms are proposed for artificial neural network training and are tested in the task of audio-visual phoneme classification.
  • The main idea of a priori machine learning is to apply a machine learning method on a machine learning problem itself. We call it ``a priori'' because the processed data set does not originate from any measurement or other observation. Machine learning which deals with any observation is called ``posterior''. The paper describes how posterior machine learning can be modified by a priori machine learning. A priori and posterior machine learning algorithms are proposed for artificial neural network training and are tested in the task of audio-visual phoneme classification. (en)
Title
  • A Priori and A Posteriori Machine Learning and Nonlinear Artificial Neural Networks
  • A Priori and A Posteriori Machine Learning and Nonlinear Artificial Neural Networks (en)
skos:prefLabel
  • A Priori and A Posteriori Machine Learning and Nonlinear Artificial Neural Networks
  • A Priori and A Posteriori Machine Learning and Nonlinear Artificial Neural Networks (en)
skos:notation
  • RIV/49777513:23520/10:00504210!RIV11-GA0-23520___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(2C06020), P(GA102/08/0707)
http://linked.open...iv/cisloPeriodika
  • 6231
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 244876
http://linked.open...ai/riv/idVysledku
  • RIV/49777513:23520/10:00504210
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • ANN; Machine Learning (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • DE - Spolková republika Německo
http://linked.open...ontrolniKodProRIV
  • [9B2D53CD1496]
http://linked.open...i/riv/nazevZdroje
  • Lecture Notes in Artificial Intelligence
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 2010
http://linked.open...iv/tvurceVysledku
  • Romportl, Jan
  • Zelinka, Jan
  • Müller, Luděk
issn
  • 0302-9743
number of pages
http://localhost/t...ganizacniJednotka
  • 23520
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 78 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software