About: Gaussian Mixtures Proposal Density in Particle Filter for Track-Before-Detect     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The paper deals with state estimation for the track-before-detect approach using the particle lter. The focus is aimed at the track initiation proposal density of the particle lter which considerably affects estimate quality. The goal of the paper is to design a proposal based on a Gaussian mixture using a bank of extended Kalman lters. This leads to root mean square error lower than that achieved by usual simple track initiation proposals. Due to application of several developed techniques reducing computational requirements of the designed proposal, the Gaussian mixture particle lter also achieves lower computational requirements than ordinary particle lter. Performance of the proposed Gaussian mixture track initiation proposal in the particle lter is demonstrated in a numerical example.
  • The paper deals with state estimation for the track-before-detect approach using the particle lter. The focus is aimed at the track initiation proposal density of the particle lter which considerably affects estimate quality. The goal of the paper is to design a proposal based on a Gaussian mixture using a bank of extended Kalman lters. This leads to root mean square error lower than that achieved by usual simple track initiation proposals. Due to application of several developed techniques reducing computational requirements of the designed proposal, the Gaussian mixture particle lter also achieves lower computational requirements than ordinary particle lter. Performance of the proposed Gaussian mixture track initiation proposal in the particle lter is demonstrated in a numerical example. (en)
Title
  • Gaussian Mixtures Proposal Density in Particle Filter for Track-Before-Detect
  • Gaussian Mixtures Proposal Density in Particle Filter for Track-Before-Detect (en)
skos:prefLabel
  • Gaussian Mixtures Proposal Density in Particle Filter for Track-Before-Detect
  • Gaussian Mixtures Proposal Density in Particle Filter for Track-Before-Detect (en)
skos:notation
  • RIV/49777513:23520/09:00502131!RIV10-MSM-23520___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1M0572), P(GA102/08/0442)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 315989
http://linked.open...ai/riv/idVysledku
  • RIV/49777513:23520/09:00502131
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Tracking; nonlinear ltering; estimation; track-before-detect; Gaussian mixture; proposal density; particle ltering (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [7C7E9F33E729]
http://linked.open...v/mistoKonaniAkce
  • Seattle, WA, USA
http://linked.open...i/riv/mistoVydani
  • NEW YORK
http://linked.open...i/riv/nazevZdroje
  • FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Straka, Ondřej
  • Šimandl, Miroslav
  • Duník, Jindřich
http://linked.open...vavai/riv/typAkce
http://linked.open...ain/vavai/riv/wos
  • 000273560000036
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA
https://schema.org/isbn
  • 978-0-9824-4380-4
http://localhost/t...ganizacniJednotka
  • 23520
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 84 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software